2019

BUSINESS ADMINISTRATION — HONOURS

Paper: A 202/C3

(Statistics for Business Decisions)

Full Marks: 80

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Section - A

1. Answer any five questions:

(a) A.M. of two observations is 25 and their G.M. is 15. Find the two observations.

(b) Find the standard deviation of the following data:

4, 8, 10, 12, 16

- (c) The mode and mean of an assymetrical distribution are respectively 12 and 18. Find the median of the distribution.
- (d) If r = 0.4, Cov(x, y) = 10 and $\sigma_y = 5$, find σ_x (symbols are of usual meaning).
- (e) What is meant by Time series? Mention the chief components of time series.
- (f) What is cost of Living Index? What are its uses?
- (g) If P(A) = 0.5, P(B) = 0.4 and $P(A \cup B) = 0.7$, find $P(A \cap B)$.
- (h) The three events A, B and C are mutually exclusive and exhaustive; if $P(B) = \frac{3}{2} P(A)$, and

$$P(C) = \frac{1}{3} P(B)$$
, find $P(C)$.

2. Answer any five questions:

(a) Calculate Median from the following frequency distribution:

Weight in kg	45-50	50-55	55-60	60-65	65-70	Total
No. of men	15	20	25	30	10	100

(b) Draw the histogram of the following frequency distribution:

Height (cm)	141-150	151-160	161-170	171-180	181-190	Total
Frequency	5	16	56	19	4	100

 2×5

 4×5

- (c) Two samples of sizes 60 and 90 have 52 and 48 as the respective arithmetic means, 9 and 12 as the respective standard deviations. Find the arithmetic mean and S.D of the combined sample of size 150.
- (d) Ten students obtained the following marks in Mathematics and Statistics. Calculate the shearman's rank correlation coefficient.

Student (Roll no.):	1	2	3	4	5	6	7	Ι ο		
Monley in M. (1			-	-	3	0	/	8	9	10
Marks in Math:	50	70	55	60	80	62	90	65	72	62
Marks in Stat:	25	(0	1.5				-	05	12	03
ividiks in Stat.	23	60	45	50	56	20	55	30	45	30

(e) Calculate 5-yearly moving averages of the following time series data:

2010	2011							
2010	2011	2012	2013	2014	2015	2016	2017	2018
332	317	357	392	402	405	410	427	405
	2010 332		2012	2012 2013	2012 2013 2014	222 247 257 2014 2013	222 217 257 200	332 217 257 200 400 400

(f) Find the mode of the following distribution:

Class	130-134	135-139	140-144	145-149	150-154	155-159	160-164
Frequency	5	15	24	28	17	8	2

(g) Draw Ogives from the following data:

Class Interval	15-21	22-28	29-35	36-42	43-49	50-56	57-63
Frequency	10	15	32	42	26	12	0

Calculate the median form the Ogives.

(h) The mean of 5 observations is 4.4 and the variance is 8.24. If three of the five observations are 1, 2 and 6, find the other two.

Section - B

- 3. Answer any five questions.
 - (a) (i) From the following data using moving average method, Calculate 4-yearly moving average:

Year Production '000 tons	2004 264	2005 225	2006 227	2007 308	2008 428	2009 352
Year Production '000 tons	2010 312	2011 320	2012 324	2013 340	2014 302	2015 371

(ii) Between the hours 10AM and 12 Noon, the average number of phone calls per minute coming into the switchboard of a company is 2.5. Find the probability that during one particular minute, there will be no call at all.

(Given $e^{-2} = 0.13534$, $e^{-0.5} = 0.60650$)

ABB(2nd Sm.)-Business Administration-H-A 202/(C3)/CBCS

10

(b) From the data given below, state which series is more consistent:

Variable	10-20	20-30	30-40	40-50	50-60	60-70
Series A	10	18	32	40	22	18
Series B	18	22	40	32	18	10

(c) Calculate Fisher's price index number from the following data. From the data, show that Fisher's index number formula satisfies both time reversal and factor reversal to

Commodity	Base	year (2016)	Current Year (2018)		
	Price	Quantity	Price	Quantity	
A	3	8	4	6	
В	7	14	8	5	
C	5	10	7	14	
D	4	18	4	13	

(d) Fit a straight line trend to the given time series data and estimate the value for the year 2020.

Year	2012	2013	2014	2015	2016	2017	2018
Average Production per month ('000 tons)	20	22	21	24	25	23	28

- (e) The weekly wages of 1000 workers are normally distributed around a mean of ₹700 and with a standard deviation of ₹50. Estimate the number of workers whose weekly ways will be (i) between ₹ 700 and ₹ 720
 - (ii) between ₹ 690 and ₹ 720

 - (iii) more than ₹ 750
 - (iv) less than ₹ 630
 - (v) estimate the lowest weekly wages of the 100 highest paid workers.

Gi

ven:	Z	0.2	0.4	1	1.28	1.4
	Area	0.0793	0.1554	0.3413	0.4	0.4192

(f) A random variable X has the followings probabilits distribution:

x	0	1	2	3	4	. 5	6	7
p(x)	a	4 <i>a</i>	3 <i>a</i>	7a	8 <i>a</i>	10a	6 <i>a</i>	9 <i>a</i>

- (i) Determine the value of a.
- (ii) Find p(x < 3), $p(x \ge 4)$, p(0 < x < 5)
- (iii) Find the minimum value of m for which $p(x \le m) \ge 0.6$.

2+6+2

2+2+2+2+2

(4)

- (g) For the variables x and y, the equation of regression lines are 4x 5y + 33 = 0 and 20x 9y = 107.
 - (i) Identify the regression lines
 - (ii) Find correlation coefficient
 - (iii) Find \bar{x} , \bar{y}
 - (iv) Find s.d. of y when variance of x is 9.

(h) Compute an appropriate measure of skewness from the following data:

4+2+2+2

% of marks	20-30	30-40	40-50	50-60	60-70	70-80	80-90
No. of students	45	40	24	12	9	3	2