T(5th Sm.)-Electronics-G/DSE-A-1/CBCS

2020

ELECTRONICS — GENERAL

Paper : DSE-A-1

(Semiconductor Devices Fabrication)

Full Marks : 50

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Day 1

Answer questions no. 1 and any four questions from the rest.

1.	Ans	answer any ten questions :					
	(a)	The common n -type dopant in Si is					
		(i) Phosphorus	(ii) Aluminum				
		(iii) Boron	(iv) Gallium.				
	(b)	Schottky defects are					
		(i) point defects	(ii) line defects				
		(iii) non-equilibrium defects	(iv) all of these.				
	(c)	Czochralski technique produces					
		(i) single crystalline Si wafer	(ii) amorphous Si wafer				
		(iii) polycrystalline Si wafer	(iv) none of these.				
	(d)	One atmospheric pressure equal to					
		(i) 1 torr	(ii) 76 torr				
		(iii) 760 torr	(iv) 1000 torr.				
	(e)	Penning gauge is a					
		(i) thermal conductivity gauge	(ii) cold cathode type ionization gauge				
		(iii) electron beam gauge	(iv) none of these.				
	(f)	RF sputtering is useful for thin film of	leposition of				
		(i) conducting materials only					
		(ii) non-conducting materials only					
	(iii) both the conducting and non-conducting materials						
		(iv) none of these.					
			D				

Please Turn Over

1×10

T(5th Sm.)-Electronics-G/DSE-A-1/CBCS			(2)	
(g) For the deposition of epitaxial thin film			n film which deposition technique would you prefer?	
		(i) Thermal evaporation	(ii) Sputtering	
		(iii) Chemical vapor deposition	(iv) None of these.	
	(h)	Molecular beam epitaxy (MBE) is	s a	
		(i) inexpensive thin film deposition technique		
		(ii) physical-vapor deposition tech	hnique	
		(iii) chemical-vapor deposition tech	chnique	
		(iv) none of these.		
	(i)	 Assuming constant diffusively, the doping profile for an infinite source diffusion process can approximated as 		
		(i) Gaussian	(ii) Exponential	
		(iii) Erfc	(iv) Pearson IV.	
	(j)	Which of the following is/are micr	rowave device(s)?	
		(i) LED	(ii) Gunn diode	
		(iii) Tunnel diode	(iv) Solar cells.	
	(k)	RAM is a memory device of	type.	
		(i) volatile	(ii) non-volatile	
		(iii) magnetic	(iv) optical	
(l) Which of the following s		Which of the following statement((s) is/are true?	
(i) Positive photoresist softens on exposure to UV light(ii) Positive photoresist hardens on exposure to UV light(iii) Negative photoresist softens on exposure to UV light			on exposure to UV light	
			on exposure to UV light	
			on exposure to UV light	
		(iv) Negative photoresist hardens	on exposure to UV light.	
2.	(a)	What is semiconductor?		
(b) Compare metal, semiconductor and insulator in term of		Compare metal, semiconductor and	d insulator in term of their band gap.	
	(c)			
			2+3+5	
3. (a) What is crystal?(b) Compare single crystalline, polycrystalline and amorphous materials.				
		Compare single crystalline, polycry	ystalline and amorphous materials.	

(c) Explain briefly the growth process of Si ingots by Czochralski technique. 2+3+5

		(3)	cs-G/DSE-A-1/CBCS				
4.	(a)	Why vacuum system is required in thin film deposition system?					
	(b)	b) Explain the working principal of a rotary vacuum pump.					
	(c)	c) What is the function of cold trap in diffusion pumps?	2+5+3				
5.	(a)	What are the advantages and disadvantages of electron beam evaporation over thermal evaporation technique?					
	(b)) Explain with schematic diagram the working principle of DC sputtering system.					
	(c)	c) How does a Pirani gauge work?	2+4+4				
6.	(a)	a) Why does oxidation important in device fabrication?					
	(b)	(b) In what conditions metal-semiconductor (both <i>n</i> and <i>p</i> type) junctions are rectifying? Exp band diagram.					
	(c)	c) Compare depletion and enhancement mode MOSFETs.	3+5+2				
7.	(a)	a) What is Electron Beam Lithography? Why it is required? How it is different from	ed? How it is different from photolithography?				
	(b)) Explain briefly the operation of a CMOS inverter circuit.					
	(c)	c) Write down the names of commonly used optical memory devices.	(2+1+2)+3+2				
8.	(a)	How materials are selected for MEMS devices?					
	(b)	b) Compare isotropic and anisotropic etching.					
	(c)	What are the advantages and disadvantages of Reactive Ion Etching (RIE) over wet chemical etching?					
	(d)	d) Explain briefly the fabrication process of a PN junction diode.	2+2+2+4				
