2020

ELECTRONICS - HONOURS

Paper: DSE-A-1

(Numerical Techniques)

Full Marks : 50

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer question no. 1 and any four questions from the rest.

1. (a) What are programming errors?
(b) What is floating point representation?
(c) Which of the two methods, namely Bisection method and Newton Raphson method, converges faster?
(d) Write Taylor series of a function $f(x)$.
(e) What is meant by extrapolation?
(f) What is the difference between a difference table and a divided-difference table?
(g) What is meant by backward differecne?
(h) What is least-squares fitting?
(i) What is Spline interpolation?
(j) What is meant by a system of linear algebraic equations?
2. (a) What is roundoff error? What is truncation error?
(b) What is meant by absolute and relative errors? The height of a building is measured to be 10 meters, while its true height is 10.27 meters. Calculate the absolute and relative errors in the measurement.
(c) What is error-propagation?
3. (a) What is a transcendental equation? What is a polynomial equation?
(b) What is meant by obtaining the roots of an equation? What is an iterative method and what is the importance of the rate of convergence in such a method?
(c) Name a few iterative methods of solving polynomial equations.
4. (a) Explain with the help of a graph, the procedure of finding a root of the equation $f(x)=0$ using Newton-Raphson method.
(b) Write the algorithm for the Newton-Raphson method.
(c) What are the pitfalls or limitations in Newton-Raphson method?
5. (a) Explain with the help of a graph, the procedure of finding a root of the equation $f(x)=0$ using Bisection method.
(b) Write the algorithm for the Bisection method.
(c) What is the drawback of the Bisection method?
6. (a) What is interpolation? How is it different from curve-fitting?
(b) Write down Lagrange's interpolation polynomial of 2 nd degree. Use it to interpolate the value of $f(x)$ at $x=2.0$, from the given values of x and $f(x)$ tabulated below:

x	1	4	6
$f(x)$	-0.2	2	10

7. (a) Use Newton's forward difference interpolation formula to interpolate the value of $f(x)$ at $x=0.15$, from the forward difference table below :

x	$f(x)$	Δf	$\Delta^{2} f$	$\Delta^{3} f$
0.1	1.005			
		0.015		
0.2	1.020		0.010	
		0.025		0.001
0.3	1.045		0.011	
		0.036		
0.4	1.081			

(b) Write the expressions for the linear regression coefficients a_{0} and a_{1} in the linear best-fit equation $y=a_{1} x+a_{0}$ in terms of the set of n data points $\left\{x_{i}, y_{i}\right\}$.
(c) Name two numerical techniques to solve a system of linear algebraic equations.
8. (a) Integrate the function $f(x)=2 x^{3}$ from $x=0$ to $x=1$ using composite Simpson's $1 / 3$ rd rule. Take $\Delta x=h=0.25$.
(b) Name a few numerical methods used to solve first order ordinary differential equations.
(c) Explain Euler's method of solving the differential equation $\frac{d y}{d x}-f(x, y)$ subject to the initial condition $y\left(x_{1}\right)=y_{1}$.

