T(2nd Sm.)-Electronics-H/CC-3/CBCS

2021

ELECTRONICS — HONOURS

Paper : CC-3

(Applied Physics)

Full Marks : 50

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Answer question no. 1 and any four questions from the rest.

1.	Answer any ten questions :						
	(a) In prin	(a) In primitive unit cell, lattice share per unit cell is					
	(i) 1	1	(ii)	2			
	(iii) 4	4	(iv)	6.			
	(b) Ionic	solids are					
	(i) v	very soft material.	(ii)	very good electrical conductor.			
	(iii) v	very high melting point material.	(iv)	very low melting point material.			
	(c) Hydrogen bond is a						
	(i) 1	primary bond	(ii)	secondary bond			
	(iii) v	very strong bond	(iv)	None of these.			
(d) Atomic packing factor for FCC structure is							
	(i) (0.50	(ii)	0.74			
	(iii) (0.68	(iv)	0.25.			
	(e) Coordination number for the BCC crystal structure is						
	(i) 4	4	(ii)	6			
	(iii) 8	8	(iv)	12.			
(f) Silicon has							
	(i) S	Simple Cubic structure (SC)	(ii)	Body Centre Cubic structure (BCC)			
	(iii) l	Face Centre Cubic structure (FCC)	(iv)	Diamond Cubic structure (DC).			

Please Turn Over

T(2nd S	m.)-Elec	ctronics-H/CC-3/CBCS	(2)				
(g) Mil	ler-Bravais indices {hkil} is useful for	or indexing	5			
	(i)	Cubic crystal	(ii)	Hexagonal crystal			
	(iii)	Monoclinic crystal	(iv)	Tetragonal crystal.			
(h) Con	cept of matter wave was suggested	by?				
	(i)	Heisenberg	(ii)	Schrodinger			
	(iii)	Einstein	(iv)	De Broglie.			
	(i) The	square of the magnitude of the way	ve function	is called			
	(i)	Current density	(ii)	Probability density			
	(iii)	Charge density	(iv)	Volume density.			
	(j) Glas	ss is a					
	(i)	Tough material	(ii)	Ductile material			
	(iii)	Hard material	(iv)	All of these.			
(k) Whi						
	(i)	Particles following FD statistics are	distinguis	hable.			
	(ii)	Particles following FD statistics are	indistingu	ishable.			
	(iii) Particles following MB statistics are distinguishable.						
	(iv)	Particles following BE statistics are	indistingu	ishable.			
	(l) Met	al has					
	(i)	Zero band gap value.					
	(ii)	Band gap value $> 6eV$.					
	(iii)	Band gap value between 0.25 eV	to 2.5 eV .				
	(iv)	Band gap value between 3 eV to	5 eV.				
2. (a) Nan) Name different crystal systems for three dimensional lattice.					
(b) What	at is inter-planar spacing?					
(c) Why	y x-ray is used for the determination	crystal str	ructure?			
(d) What	at is reciprocal lattice?		3+2+3+2			
3. (a) Stat	e Hook's law. Show a stress-strain c	liagram and	d find out Young's modulus from the diagram.			
(b) What	at is plastic deformation?					
(c) What	at is heat capacity?					

(d) Briefly explain why metals are typically better thermal conductors than ceramic materials.

(1+1+1)+2+2+3

3+2+3+2

T(2nd Sm.)-Electronics-H/CC-3/CBCS

4+4+2

- **4.** (a) Calculate the Compton wavelength of an electron and find the maximum wavelength change in the Compton effect.
 - (b) Show that the wave velocity of the De Broglie wave is a function of the wavelength even in free space, while the group velocity equal to the particle velocity.
 - (c) Compare phase velocity and group velocity.
- 5. (a) What is wave vector?
 - (b) Write down the time-independent Schrodinger equation for a particle in a one dimensional potential box with rigid boundaries.
 - (c) Show that :

(i)
$$[x, p_x] = ih\psi$$

(ii)
$$[p_x, p_y] = 0.$$
 2+4+4

- **6.** (a) What is thermodynamical probability?
 - (b) What is Bose condensation?
 - (c) How does Fermi energy vary with temperature?
 - (d) Derive Rayleigh Jeans law from Plank's radiation law. 2+2+3+3
- 7. (a) State and explain Matheissen's rule related to the resistivity of metals.
 - (b) Show the resistivity versus temperature plot for metals.
 - (c) What are holes?
 - (d) From E-K diagram, show that effective mass of hole is higher than the effective mass of electron. 3+1+2+4
- **8.** (a) Define magnetic susceptibility and permeability. How can one classify magnetic materials on the basis of these properties?
 - (b) What is Curie point? Why magnetic behaviour of magnetic substances decreases with increasing temperature? Explain.
 - (c) Draw the B-H curve for a ferromagnetic material and identify the retentivity and coercive field on the curve. 4+3+3

(3)