2021

CHEMISTRY - HONOURS

Paper : CC-9
[Physical Chemistry - 3]

Full Marks : 50

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer question no. 1 and any eight from the rest.

1. Answer any ten questions:
(a) If $\hat{\alpha}$ and $\hat{\beta}$ are two operators such that $[\hat{\alpha}, \hat{\beta}]=1$, then find $\left[\hat{\alpha}, \hat{\beta}^{2}\right]$.
(b) What is the difference between the tie lines in phenol-water system and those in acetic acid-chloroform-water system?
(c) If $\left|\psi_{1}\right\rangle=\left(\begin{array}{l}1 \\ i \\ 0\end{array}\right)$ and $\left|\psi_{2}\right\rangle=\left(\begin{array}{c}-i \\ 0 \\ 2 i\end{array}\right)$, Find $\left\langle\psi_{1} \mid \psi_{2}\right\rangle$.
(d) Is $\cos |x|$ an acceptable wave function in the range $(-2 \pi, 2 \pi)$?
(e) Scattering of x-rays by electrons in diffraction work is analogous to the Compton scatteringJustify or criticized.
(f) In ordinary algebra, $(\mathrm{P}+\mathrm{Q})(\mathrm{P}-\mathrm{Q})=\mathrm{P}^{2}-\mathrm{Q}^{2}$. Expand $(\hat{\mathrm{P}}+\hat{\mathrm{Q}})(\hat{\mathrm{P}}-\hat{\mathrm{Q}})$. Under what conditions do we find the same result as in the case of ordinary algebra?
(g) Determine the Miller indices of the planes that intersect the crystal axes at
(i) $a, 2 b, 3 c$ and
(ii) $a, b,-c$.
(h) Elevation of boiling point is an entropy effect. - Comment.
(i) Depression of freezing point is always observed. - Justify or criticized. Assume the solute does not dissociate or associate.
(j) A metallic element exists in simple cubic structure. Each edge of the unit cell is $3 \AA^{\circ}$. The density of metal is $10 \mathrm{gm}^{-3}$. How many unit cells will be there in $16 \cdot 2 \mathrm{~g}$ of the metal?
(k) Determine the number of components when AlCl_{3} is added to water.
(l) A $10(\mathrm{~m})$ aqueous solution of urea is cooled to $-13 \cdot 02^{\circ} \mathrm{C}$. What amount of urea will separate out if the mass of solution taken is 100 g ? $\left[\mathrm{K}_{f}\right.$ (water) $\left.=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}\right]$.
2. (a) A compound made of particles A, B and C form ccp lattice. In the lattice, ion A occupies the lattice points and ions B and C occupy the alternate tetrahedral voids. If all the ions along one of the body diagonals are removed, then find the formula of the compound.
(b) Let $\phi=x$. If ϕ is expanded in terms of $\sin k x$ such that

$$
\begin{align*}
& \phi=\sum_{k=1}^{n} C_{k} \sin k x \quad[-\pi \leq x \leq \pi] \\
& \text { show that, } C_{n}=\frac{2}{n}(-1)^{n+1}
\end{align*}
$$

3. (a) Show that the operator $\hat{A}=i\left(\hat{X}^{2}+1\right) d / d x+i \hat{X}$ is hermitian.
(b) A photon of energy 3 keV collides elastically with an electron initially at rest. If the photon emerges at an angle of 60°, calculate -
(i) the kinetic energy of the recoiling electron, and
(ii) the angle at which the electron recoils.
[Given : $m_{c}=9 \cdot 1 \times 10^{-31} \mathrm{~kg}$]
4. (a) Check the acceptability of the following functions in the given domain :
(i) $e^{i m \phi}(0,2 \pi)$
(ii) $e^{-x} \cos x(0, \infty)$
(b) Suppose a metal crystal forms a cubic unit cell. The first six observed Bragg diffraction angles, using the powder method and x-rays with $\lambda=165 \cdot 8 \mathrm{pm}$, be as follows :

$$
21 \cdot 96^{\circ}, 25 \cdot 59^{\circ}, 37 \cdot 65^{\circ}, 45 \cdot 74^{\circ}, 48 \cdot 2^{\circ} \text { and } 59 \cdot 7^{\circ}
$$

Determine the type of the cubic unit cell.
(Arrange your calculations in a Tabular form).
5. (a) Two liquids A and B form an ideal solution. At a particular temperature, the vapour pressure of A is 200 torr while that of pure B is 75 torr. If the vapour over the solution consists of 50 mole percent A, what is the mole percent of A in the liquid phase?
(b) Locate the point inside the graph for a ternary mixture with 50% of $A, 20 \%$ of B and 30% of C. $2+3$
6. (a) Find out the number of phases for (i) a dilute solution of the salt $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ in water, (ii) a saturated solution in contact with the solid salt, at equilibrium with the vapour phase.

Find out the degrees of freedom in each case.
(b) For an operator \hat{S}, the following expansion (Taylor Series) is valid :

$$
\begin{aligned}
e^{\hat{S}} & =1+\hat{S}+\frac{\hat{S}^{2}}{2!}+\frac{\hat{S}^{3}}{3!}+\ldots \\
& =\sum_{n=0}^{\infty} \frac{\hat{S}^{n}}{n!}
\end{aligned}
$$

Show under what condition $e^{\hat{A}+\hat{B}}=e^{\hat{A}} \cdot e^{\hat{B}}$ where \hat{A} and \hat{B} are two operators.
7. (a) For a particle in a one-dimensional box, the wave function is

$$
\psi(x)=\sqrt{\frac{2}{a}} \sin \left(\frac{n \pi x}{a}\right), 0 \leq x \leq a
$$

But obviously, this is not an eigenfunction of the operator \hat{p}_{x}. If so, how would you determine the linear momentum of the particle?
(b) The normal boiling point of a saturated solution of bezanilide in ethanol is $82 \cdot 00^{\circ} \mathrm{C}$. The melting point of benzanilide is $161^{\circ} \mathrm{C}$, the melting point and normal boiling points of ethanol are $-117^{\circ} \mathrm{C}$ and $80 \cdot 00^{\circ} \mathrm{C}$. K_{b} for ethanol is $1.22 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$. Molecular weights are 46 for ethanol and 197 for benzanilide.
(i) Calculate the composition of this saturated solution of benzanilide.
(ii) Calculate the molar heat of fusion of benzanilide.

You may select the appropriate colligative-property equations so that your answers will be accurate only to about 1%, and you may assume ideal solution behaviour.
$2+3$
8. (a) An aqueous solution of sucrose freezes at $-0 \cdot 210^{\circ} \mathrm{C}$. Calculate the normal boiling point and the molality of an aqueous dilute sodium chloride solution having the same vapour pressure. Assume ideal solution behaviour. Given, K_{b} for water $=0.51 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$.
(b) How many octahedral voids are present in a fcc lattice? Indicate the location of all octahedral voids with proper explanation.
9. (a) For Al metal, the Einstein characteristic temperature is 240 K . Calculate $\mathrm{C}_{\mathrm{v}, \mathrm{m}}$ of Al , using the Einstein model of heat capacity at (i) 50 K , and (ii) 300 K .
(b) If $\hat{\alpha}$ and $\hat{\beta}$ are two commutating and Hermitian operators, and ψ_{1} and ψ_{2} are eigenfunctions of $\hat{\alpha}$ with a_{1} and a_{2} eigenvalues respectively, then show that, $\int \psi_{1} \hat{\beta} \psi_{2} d \psi=0$, (unless $a_{1}=a_{2}$).
10. (a) Calculate the separation of the (133) planes of an orthorhombic unit cell with $a=0.82 \mathrm{~nm}$, $b=0.941 \mathrm{~nm}$, and $c=0.75 \mathrm{~nm}$. Also find the separation of the 399 planes for the same lattice, using argument only.
(b) $\psi(x)=A \sin k x+B \cos k x$, where A and B are arbitrary constants, and $k=\left(8 \Pi^{2} m E / h^{2}\right)^{1 / 2}$ represents a wave function for a free particle (in x-direction). Justify the energy is not quantized. Why can not the wave function of a free particle be normalized?
11. (a) Consider the states

$$
\begin{aligned}
& |\psi\rangle=9 i\left|\phi_{1}\right\rangle+2\left|\phi_{2}\right\rangle \text { and } \\
& |\chi\rangle=-\frac{i}{\sqrt{2}}\left|\phi_{1}\right\rangle+\frac{1}{\sqrt{2}}\left|\phi_{2}\right\rangle
\end{aligned}
$$

where two vectors $\left|\phi_{1}\right\rangle$ and $\left|\phi_{2}\right\rangle$ form a complete and orthonormal basis.
Calculate the operators $|\psi\rangle\langle\chi|$ and $|\chi\rangle\langle\psi|$. Are they equal?
(b) Calculate the Eutectic temperature and the Eutectic composition for a binary solid-liquid system if $\Delta \mathrm{H}_{\text {fus, } \mathrm{A}}=2.1 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\Delta \mathrm{H}_{\text {fus,B }}=4.18 \mathrm{~kJ} \mathrm{~mol}^{-1}$, and the melting points of pure A and pure B are $400^{\circ} \mathrm{C}$ and $600^{\circ} \mathrm{C}$ respectively.
12. (a) Show that if $\hat{\alpha}$ and $\hat{\beta}$ are Hermitian operators, then $\hat{\alpha} \hat{\beta}$ will be Hermitian if $[\hat{\alpha}, \hat{\beta}]=0$.
(b) Metals A and B form the compounds $A B_{3}$ and $A_{2} B_{3}$. Solids $A, B, A B_{3}$ and $A_{2} B_{3}$ essentially are immiscible in each other, but are completely miscible as liquids. A and B melt at $600^{\circ} \mathrm{C}$ and $1100^{\circ} \mathrm{C}$, respectively. Compound $\mathrm{A}_{2} \mathrm{~B}_{3}$ melts congruently at $900^{\circ} \mathrm{C}$ and gives a simple eutectic with A at $450^{\circ} \mathrm{C}$. Compound AB_{3} decomposes at $800^{\circ} \mathrm{C}$ to give the other compound and a melt. There is a eutectic at $650^{\circ} \mathrm{C}$.

Draw the simplest phase diagram consistent with this information, and label all phase regions.
13. (a) Write down the effective number of atoms present in a hcp unit cell with proper explanation.
(b) Two solutions of non-volatile solutes A and B are prepared. The molar mass ratio $M_{A} / M_{B}=1 / 3$. Both are prepared as 5% solutions by weight in water. Calculate the ratio of freezing point depressions $\left(\Delta T_{f}\right)_{A} /\left(\Delta T_{f}\right)_{B}$ of the solutions. If the two solutions are mixed to prepare two new solutions, S_{1} and S_{2}, the mixing ratio being $2: 3$ and $3: 2$ by volume for S_{1} and S_{2} respectively, what would be the ratio $\left(\Delta T_{f}\right)_{S_{1}} /\left(\Delta T_{f}\right)_{S_{2}}$?

