T(6th Sm.)-Computer Sc.-H/CC-14/CBCS

2021

COMPUTER SCIENCE — HONOURS

Paper : CC-14

(Theory of Computation)

Full Marks : 50

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Answer question no. 1 and any four from the rest.

1. Answer *any five* questions :

 2×5

- (a) Distinguish between Deterministic Finite Automata (DFA) and Non-deterministic finite automata (NDFA).
- (b) Draw the state diagram of a DFA which can recognize the strings having a substring 10.
- (c) Draw a state diagram for a NDFA recognizing two strings WEB and WEBSITE, where \sum is the set of all printable ASCII characters.
- (d) Give an example of a Type-2 production.
- (e) When is a grammar said to be an ambiguous grammar?
- (f) Find the regular expression that represents the set of all strings over $\{a, b\}$ beginning with <u>a</u> and ending with <u>bb</u>.
- (g) Define a language over {0, 1}, using set definition, with some zeroes (may be none), followed by at least as many 1's.
- (h) Define Instantaneous description (ID) of a Turing machine.
- 2. (a) State Arden's theorem.
 - (b) Describe the language accepted by NFA of the figure given below. Construct a DFA for this NFA.

- **3.** (a) Let L be a set of all palindromes over $\{x, y\}$. Construct a grammar G generating L.
 - (b) Show that if L_1 and L_2 are regular grammars, then $L_1 \cap L_2$ is also a regular grammar. 6+4

Please Turn Over

2+(2+6)

T(6th Sm.)-Computer Sc.-H/CC-14/CBCS

- 4. Given $\sum = \{a, b\}$. Write regular expressions for the following cases :
 - (a) starting and ending with a
 - (b) starting and ending with different symbols
 - (c) number of a's are even
 - (d) no two *a*'s come together
 - (e) length of the string is 2 mod 3.
- 5. (a) Convert the following finite automata to a regular expression. Show all the steps.

(2)

- (b) Show that $L = \{xx \mid x \in \{a, b\}^*\}$ is not regular.
- 6. (a) Let $G = (\{S, A_1, A_2\}, \{a, b\}, P, S)$, where P consists of $S \to aA_1A_2a, A_1 \to baA_1A_2b, A_2 \to A_1ab$, $aA_1 \to baa, bA_2b \to abab$. Test whether the string y = baabaababbaba belongs to L(G) or not.
 - (b) If $G = (\{s\}, \{0, 1\}, \{S \to OSI, S \to \in\}, S)$, find L(G).
- 7. (a) Define a Turing machine using formal parameters.
 - (b) Design a TM to recognize the language {112233}. Show the steps clearly. Draw the transition table.
 3+(5+2)
- 8. (a) Define a push-down automata.
 - (b) Consider the following grammar

 $S \to AB$ $B \to aBb \mid \in$ $A \to aA \mid a$

Find the language generated by the grammar.

3+7

4+6

5+5

2+2+2+2+2