2021

COMPUTER SCIENCE - HONOURS

Paper: CC-14

(Theory of Computation)

Full Marks : 50

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer question no. 1 and any four from the rest.

1. Answer any five questions:
(a) Distinguish between Deterministic Finite Automata (DFA) and Non-deterministic finite automata (NDFA).
(b) Draw the state diagram of a DFA which can recognize the strings having a substring 10 .
(c) Draw a state diagram for a NDFA recognizing two strings WEB and WEBSITE, where \sum is the set of all printable ASCII characters.
(d) Give an example of a Type-2 production.
(e) When is a grammar said to be an ambiguous grammar?
(f) Find the regular expression that represents the set of all strings over $\{a, b\}$ beginning with a and ending with $\underline{\mathrm{bb}}$.
(g) Define a language over $\{0,1\}$, using set definition, with some zeroes (may be none), followed by at least as many 1 's.
(h) Define Instantaneous description (ID) of a Turing machine.
2. (a) State Arden's theorem.
(b) Describe the language accepted by NFA of the figure given below. Construct a DFA for this NFA.

3. (a) Let L be a set of all palindromes over $\{x, y\}$. Construct a grammar G generating L.
(b) Show that if L_{1} and L_{2} are regular grammars, then $L_{1} \cap L_{2}$ is also a regular grammar. ${ }^{6}+4$
4. Given $\sum=\{a, b\}$. Write regular expressions for the following cases :
(a) starting and ending with a
(b) starting and ending with different symbols
(c) number of a 's are even
(d) no two a 's come together
(e) length of the string is $2 \bmod 3$.
5. (a) Convert the following finite automata to a regular expression. Show all the steps.

(b) Show that $L=\left\{x x \mid x \in\{a, b\}^{*}\right\}$ is not regular.
6. (a) Let $G=\left(\left\{S, A_{1}, A_{2}\right\},\{a, b\}, P, S\right)$, where P consists of $S \rightarrow a A_{1} A_{2} a, A_{1} \rightarrow b a A_{1} A_{2} b, A_{2} \rightarrow A_{1} a b$, $a A_{1} \rightarrow b a a, b A_{2} b \rightarrow a b a b$. Test whether the string $y=b a a b a a b a b b a b a$ belongs to $L(G)$ or not.
(b) If $G=(\{s\},\{0,1\},\{S \rightarrow O S I, S \rightarrow \in\}, S)$, find $L(G)$.
7. (a) Define a Turing machine using formal parameters.
(b) Design a TM to recognize the language $\{112233\}$. Show the steps clearly. Draw the transition table.
8. (a) Define a push-down automata.
(b) Consider the following grammar
$S \rightarrow A B$
$B \rightarrow a B b \mid \in$
$A \rightarrow a A \mid a$
Find the language generated by the grammar.
