V(3rd Sm.)-Chemistry-H/CC-6/CBCS

2021

CHEMISTRY — HONOURS

Paper : CC-6

(Inorganic Chemistry)

Full Marks : 50

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Question no. 1 is compulsory and answer any eight questions from the rest.

1. Answer any ten questions :

 1×10

- (a) Out of P and S whose 1st ionisation potential will be higher?
- (b) What will be effective nuclear charge (z^*) on a 3p electron of Cl atom?
- (c) What happens when borax is heated strongly?
- (d) Arrange the following ions in the order of increasing size : H⁻, F⁻, Cl⁻, Br⁻.
- (e) Give molecular formula of Potassium Iron(III)hexacyanoferrate(II).
- (f) What will be the shape of thionyl chloride?
- (g) Among SF_4 , SF_5 and SF_6 , which compound has minimum electron affinity?

NL

(h) Comment on the oxidation state of Tl in TII_3 .

(i) Write IUPAC name of
$$[(en)_2 Co(en)_2]^{3+}$$

- (j) In which direction the following reaction will proceed in gas phase?
 Xe + He⁺ ⇒ Xe⁺ + He
- (k) Give two examples of siloxanes.
- (l) Give one example of purely inorganic optically active compound.
- 2. (a) The interionic distance of $Mg^{2+} O^{2-} = 257.4$ pm. Calculate the Pauling univalent radii of Mg^{2+} and O^{2-} .
 - (b) Perdisulphates are strong oxidising agents and can be used in analytical processes. Explain with an example. 3+2

Please Turn Over

V(3rd Sm.)-Chemistry-H/CC-6/CBCS

- **3.** (a) P, Q, R are the elements of same period in the periodic table. From their 1st and 2nd ionisation energy table, identify them as alkali metal, alkaline earth metal and non-metal. Justify your answer.
 - $\begin{array}{cccc} P & Q & R \\ I_1 & 17.4 & 5.39 & 6.11 \\ I_2 & 35.0 & 75.6 & 11.87 \\ (I_1, I_2 \text{ in kJ/mole}) \end{array}$
 - (b) Electron affinity of chlorine is 349 kJ/mole. How much energy in kJ is released when 1g of chlorine is converted completely into Cl⁻(g) ions? 3+2
- 4. (a) Discuss the hydrolytic trends of CCl_4 and $SiCl_4$.
 - (b) Give all the geometrical isomers with their IUPAC names of the following : $[Ru(py)_3Cl_3]$. 3+2
- 5. (a) Complete the reactions and balance in each case :
 - (i) $ClF_5 + AsF_5 + KrF_2 \rightarrow$
 - (ii) $XeF_4 + KI \rightarrow$
 - (iii) $SF_4 + XeF_4 \rightarrow$
 - (b) Sn^{4+} is stable whereas Pb^{4+} is highly oxidizing. Explain.
- 6. (a) ClF₃ falls under which class of compounds? What will be its structure? How polyhalides can be obtained from it?

3+2

3+2

- (b) N atoms of phosphazenes are weakly basic.— Justify. 3+2
- (a) Calculate the electronegativity of chlorine in Mulliken's scale and hence find out the electronegativity of the same in Pauling's scale.
 Given : Electron affinity of chlorine = 4.0 eV per atom. Ionisation energy of chlorine = 13.0 eV per

atom.

- (b) Discuss bonding of XeF_4 .
- **8.** (a) What is polymer? What do you understand by the term 'Inorganic Polymer'? How it differs from organic polymers?
 - (b) Inorganic benzene is more reactive than benzene. Prove it with examples. 3+2
- **9.** (a) How will you generate perxenate ion from XeO₃? Xenon fluoride compounds should not be handled in glass apparatus. Why?
 - (b) Molar conductance (in ohm⁻¹cm²mol⁻¹) at 0.001 (M) concentration of CoCl₃·4NH₃, CoCl₃·5NH₃ and CoCl₃·6NH₃ complexes are 98, 261 and 426 respectively. Rationalise these in the light of Werner's theory.

		(3) <i>V(3rd Sm.)-Chemistry-H/CC-6/</i>	CBCS
10.	(a)	How does electronegativity vary with (i) hybridization (ii) screening effect of orbitals?	
	(b)	Mention various allotrops of S and identify its most stable allotropic form.	3+2
11.	(a)	Discuss structure and bonding in phosphazene.	
	(b)	Stable form of oxygen is O_2 while that of sulphur is S_8 . Explain.	3+2
12.	(a)	Explain :	
		(i) Gold generally forms auride ion.	
		(ii) Thermal stability of BeCO ₃ and MgCO ₃ are different.	
	(b)	Justify very high melting point of boron and very low melting point of mercury.	3+2
12.	(a) (b)	 Explain : (i) Gold generally forms auride ion. (ii) Thermal stability of BeCO₃ and MgCO₃ are different. Justify very high melting point of boron and very low melting point of mercury. 	3+2