X(6th Sm.)-Mathematics-H/[DSE-B(2)-1]/CBCS

2022

MATHEMATICS — HONOURS

Paper : DSE-B(2)-1

(Point Set Topology)

Full Marks : 65

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

- 1. Answer all multiple choice questions. For each question, 1 mark for choosing correct option and 1 mark for justification. 2×10
 - (a) Consider the set \mathbb{R} of real numbers. Let τ be the lower limit topology and σ be the upper limit topology on **R**. Then
 - (ii) $\sigma \subset \tau$ (i) $\tau \subseteq \sigma$
 - (iii) $\tau = \sigma$ (iv) τ and σ are non-comparable.
 - (b) Let (X, τ) be a topological space and $A \subseteq X$. It is false that if
 - (i) (X, τ) is compact, then (A, τ_A) is compact
 - (ii) (X, τ) is T_2 , then (A, τ_A) is T_2
 - (iii) (X, τ) is first countable, then (A, τ_A) is first countable
 - (iv) (X, τ) is T_1 , then (A, τ_A) is T_1 .
 - (c) Let (X, τ) be a topological space such that for every point $p \in X$, the sequence $\{p, p, p, ...\}$ has a unique limit p, then (X, τ) is
 - (i) T_1 space (ii) T_2 space
 - (iii) first countable space (iv) compact space
 - (d) A connected subset G of the real line \mathbb{R} with at least two points must be
 - (i) a finite set (ii) a bounded set
 - (iii) an infinite closed set (iv) an uncountable set.
 - (e) Let $f: (X, d) \to (Y, d_1)$ be a continuous bijection where (X, d) is a compact metric space, (Y, d_1) is any metric space. Then which any metric space. Then which of the following is true?
 - (i) f is a homeomorphism
 - (ii) f^{-1} is open but not continuous
 - (iii) f^{-1} is closed but not continuous
 - (iv) f^{-1} is continuous but neither open nor closed.

Please Turn Over

X(6th Sm.)-Mathematics-H//DSE-B(2)-1]/CBCS

(f) Let $Y = [0, 1] \cup (2, 3)$ be endowed with the subspace topology of \mathbb{R} . Then which of the following is true?

(2)

- (i) (2, 3) is open but not closed in Y
- (ii) [0, 1] is closed but not open in Y
- (iii) (2, 3) and [0, 1] both are clopen in Y
- (iv) (2, 3) is clopen but [0, 1] is not clopen in Y.
- (g) In the subspace topology on [-1, 1], which of the following set is open?

(i)
$$\{x \in \mathbb{R} : \frac{1}{2} \le |x| \le 1\}$$

(ii) $\{x \in \mathbb{R} : \frac{1}{2} \le |x| \le 1\}$
(iii) $\{x \in \mathbb{R} : \frac{1}{2} \le |x| < 1\}$
(iv) $\{x \in \mathbb{R} : -1 \le x \le \frac{1}{2}\}$

(h) Let (\mathbb{R}, τ_f) be the cofinite topological space. Then the set $\{\frac{1}{n} : n \in \mathbb{N}\}$ is

- (i) a closed set (ii) an open set
- (iii) both open and closed (iv) a dense set.

(iii) $\mathbb{R} \setminus \{1\}$ (iv) \mathbb{R} .

(j) In a topological space (X, τ) , A is a dense subset of X and B is dense in A, then B is a

- (i) open subset of X (ii) closed subset of X
- (iii) dense subset of X (iv) none of the above.

Unit - 1

(Marks : 20)

Answer any four questions.

- 2. (a) Consider the set N of natural numbers and let $A_n = \{n, n+1, n+2,...\}$. Show that the collection $\{A_n : n \in \mathbb{N}\} \cup \{\phi\}$ is a topology on N.
 - (b) Find the derived set of the set {1947} in the above topological space.3+2
- 3. (a) Prove that every infinite subset of X is dense in X with respect to the cofinite topology.
 - (b) If D is dense in a space X and U is an open set in X, then show that $\overline{U} = \overline{U \cap D}$.
- 4. (a) Let $\{\tau_{\alpha} : \alpha \in \Lambda\}$ be a collection of topologies on a set X. Show that there is a unique smallest topology on X containing all the topologies τ_{α} .
 - (b) Let (X, d) be a metric space and $A \subseteq X$. Prove that $\overline{A} = \{x \in X : d(x, A) = 0\}$.

X(6th Sm.)-Mathematics-H/[DSE-B(2)-1]/CBCS

- 5. (a) Show that the collection *e* = {[a, b]: a < b, a, b ∈ Q} is a basis that generates a topology different from the lower limit topology on R.
 - (b) Consider the order topology on the set of natural numbers, N. Is the topology same as the discrete topology on N? Justify. 3+2
- 6. (a) Consider the following collections of subsets of the set \mathbf{R} :

$$\beta_1 = \{(a, b) : a, b \in \mathbb{R}\} \cup \{(a, b) \setminus A : a, b \in \mathbb{R} \text{ and } A = \{\frac{1}{n} : n \in \mathbb{N}\}\}$$

 $\beta_2 = \{(a, \infty) : a \in \mathbb{R}\}$

Show that β_1 and β_2 are basis for some topologies on **R**.

- (b) Correct or Justify : **R** with usual topology and $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ with usual subspace topology are homeomorphic. 3+2
- (a) Prove that if Y is a closed subset of a topological space (X, τ), then a subset G of Y is closed in the subspace (Y, τ_Y) if and only if it is closed in (X, τ).
 - (b) Prove that boundary of a finite set A in (\mathbb{R}, τ_f) is A itself, where τ_f denotes the cofinite topology on \mathbb{R} . 3+2
- 8. (a) What is metric invariant? Correct or Justify : A metric invariant is also a topological invariant.
 - (b) X is a metric space with metric d. Show that $d: X \times X \to \mathbb{R}$ is continuous. 3+2

Unit - 2

(Marks : 10)

Answer any two questions.

- 9. (a) Show that every metric space is a first countable space but not necessarily second countable.
 - (b) Let X be an uncountable set and p be a fixed point in X. Consider the topology $\tau = \{A \subseteq X : p \in A\} \cup \{\phi\}$ on X. Examine whether (X, τ) is a second countable space. 2+1+2
- 10. Let (X, τ) be a first countable space and $f: X \to Y$ be any function (Y being any topological space) such that for any sequence $\{x_n\}$ converging to any point $x \in X$, the sequence $\{f(x_n)\}$ converges to f(x). Prove that f is continuous on X.
- 11. Let $f: X \to Y$, $g: X \to Y$ be two continuous functions from a topological space (X, τ) to a Hausdorff space (Y, σ) . Prove that

(a)
$$F = \{x \in X : f(x) = g(x)\}$$
 is a closed set
(b) $f|_D = g|_D \Rightarrow f = g$, where $\overline{D} = X$.
Please Turn Over

(3)

X(6th Sm.)-Mathematics-H/[DSE-B(2)-1]/CBCS

- (4)
- 12. (a) A G_8 set in a space X is a set that equals a countable intersection of open sets of X. Show that if X is a first countable T_1 -space, every singleton set is a G_8 set.
 - (b) Prove that \mathbb{R} endowed with cofinite topology is not a first countable space. 3+2

Unit - 3

(Marks : 15)

Answer any three questions.

- 13. (a) (ℝ, τ_C) is the co-countable topological space. Is the set [0, 1] a compact subspace of ℝ? Justify.
 (b) Prove or Disprove : Every infinite compact subset of ℝ is connected. Is the converse true? Justify.
- 14. Prove that the set of components of a topological space forms a partition of that space.
- 15. Let (X, τ) be any topological space and $\beta = \{X \setminus K : K \text{ is compact and closed in } (X, \tau)\}$. Prove that β is a basis for some topology τ' on X such that $\tau' \subseteq \tau$. Prove that (X, τ') is compact.

3+2

2+3

5

- 16. (a) (X, τ) is a topological space and $A \subseteq X, C$ is a connected subset of X that intersects both A and $X \setminus A$. Prove that C intersects boundary of A.
 - (b) $f: [0, 1] \rightarrow [0, 1]$ is a continuous function. Show that there exists $C \in [0, 1]$ such that f(C) = C, where [0, 1] is endowed with the usual subspace topology. 2+3
- 17. Prove that the union of any family of connected sets every pair of which has an element in common, is a connected set in any topological space. Is the intersection of two connected sets always connected? Justify.
 3+2

