2022

MATHEMATICS - HONOURS

Paper : DSE-A(2)-1
(Differential Geometry)
Full Marks : 65
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.
[The symbols used have usual meanings]

1. Answer all the following multiple choice questions. For each question, 1 mark for choosing correct option and 1 mark for correct justification.
2×10
(a) If $\left(A_{1}, A_{2}\right)$ is a covariant vector in cartesian coordinates x^{1}, x^{2} where $A_{1}=\frac{x^{1}}{x^{2}}$ and $A_{2}=\frac{x^{2}}{x^{1}}$, then the components of the vector in polar coordinates (r, θ) are
(i) $\left(\frac{\cos 3 \theta+\sin 3 \theta}{\cos \theta \sin \theta}, r(\sin \theta-\cos \theta)\right)$
(ii) $(\cot \theta, \tan \theta)$
(iii) $\left(\frac{\cos ^{3} \theta+\sin ^{3} \theta}{\cos \theta \sin \theta}, r(\sin \theta-\cos \theta)\right)$
(iv) $(r \cos \theta, r \sin \theta)$.
(b) The line element of a three-dimensional Riemannian space V_{3} is $d s^{2}=-\left(d x^{1}\right)^{2}+\left(d x^{2}\right)^{2}-\left(d x^{3}\right)^{2}$. Then the angle between two covariant vectors $(-1,0,1)$ and $(1,-1,1)$ is
(i) 0°
(ii) 90°
(iii) $\cos ^{-1}\left(\frac{1}{\sqrt{6}}\right)$
(iv) 60°.
(c) The Christoffel symbol $[12,2]$ in a 3 -dimensional Riemannian space V_{3} in which the line element is given by $d s^{2}=\left(d x^{1}\right)^{2}+\left(x^{1}\right)^{2}\left(d x^{2}\right)^{2}+\left(d x^{3}\right)^{2}$ is equal to
(i) $\frac{1}{x^{1}}$
(ii) 1
(iii) $\left(x^{1}\right)^{2}$
(iv) x^{1}.
(d) In a Riemannian space V_{n}

$$
\left(g_{h j} g_{i k}-g_{h i} g_{j k}\right) g^{h j}=
$$

(i) $n g_{i k}$
(ii) $(n+1) g_{i k}$
(iii) $g_{i k}$
(iv) $(n-1) g_{i k}$.
(e) If $A_{i}=g_{i j} A^{j}$, then $g_{i j} A^{j}{ }_{, k}$ is equal to
(i) $A_{i k}$
(ii) A^{i}, k
(iii) $A_{i, k}$
(iv) 0 .
(f) The geodesics on a right circular cylinder are
(i) circles
(ii) hyperbolas
(iii) parabolas
(iv) ellipses.
(g) If a surface is isometric with the Euclidean plane E^{2} then
(i) $K>0$
(ii) $K<0$
(iii) $K=0$
(iv) $K \neq 0$.
[where K is the Gaussian curvature of the surface]
(h) If A_{j} is a covariant vector, then $\frac{\partial A_{j}}{\partial x^{i}}$ is
(i) a $(2,0)$ tensor
(ii) a $(1,1)$ tensor
(iii) not a tensor
(iv) a $(0,2)$ tensor.
(i) The components of a contravariant vector in the x-coordinate system are 8 and 4 . Then its components in the \bar{x}-coordinate system if $\bar{x}^{1}=3 x^{1}$ and $\bar{x}^{2}=5 x^{1}+3 x^{2}$ are,
(i) 24 and 52
(ii) 52 and 28
(iii) 22 and 28
(iv) 24 and 56 .
(j) After the contraction of a tensor of order $(3,4)$ becomes a tensor of order,
(i) $(2,3)$
(ii) $(2,4)$
(iii) $(3,3)$
(iv) $(3,4)$.

Unit - 1

Answer any one question.

2. If $A_{i j}$ is a symmetric non-singular tensor of type $(0,2)$ such that $A_{i j}, k=0$ show that

$$
\left\{{ }_{i} h_{j}\right\}=\frac{1}{2} A^{h k}\left(\frac{\partial A_{i k}}{\partial x^{j}}+\frac{\partial A_{j k}}{\partial x^{i}}-\frac{\partial A_{i j}}{\partial x^{k}}\right)
$$

3. Prove that the covariant differentiation of the fundamental tensors $g_{i j}, g^{i j}$ and δ_{j}^{i} vanish identically.

$$
\begin{gather*}
\text { Unit - } 2 \\
\text { Answer any four questions. }
\end{gather*}
$$

4. Show that the ratio of the curvature to the torsion of a space curve different from a straight line is a non-zero constant if and only if the curve is a helix.
5. Find the osculating sphere of the curve $x^{1}=2 t+1, x^{2}=3 t^{2}+2, x^{3}=4 t^{3}+3$ at the point $(1,2,3)$.
6. Define asymptotic lines of the surface. Prove that the parametric curves are asymptotic lines if and only if $b_{11}=b_{22}=0$.
7. Prove that a point P of a smooth surface is umbilical (i.e. principal curvatures k_{1} and k_{2} are equal) if and only if the Gaussian curvature K and the mean curvature H satisfy $H^{2}=K$.
8. Calculate the Gaussian curvature for a surface with metric $d s^{2}=(d u)^{2}+c^{2}(d v)^{2}$.
9. Calculate the second fundamental form of the surface for the right helicoid given by $r=(u \cos v, u \sin v, c v)$.
10. Prove that the intrinsic derivatives of the fundamental tensors and Kronecker delta are zero.

$$
\begin{gathered}
\text { Unit - } 3 \\
\text { Answer any four questions. } \\
\text { lopable? Determine whether the s } \\
d s^{2}=\left(u^{2}\right)^{2}\left(d u^{1}\right)^{2}+\left(u^{1}\right)^{2}\left(d u^{2}\right)^{2}
\end{gathered}
$$

11. When a surface is called developable? Determine whether the surface with the metric
is developable or not.
12. Prove that a necessary and sufficient condition for a curve on a surface to be a geodesic is that its geodesic curvature is zero.
13. Show that the condition that the u^{1}-curve and u^{2}-curve be geodesic are $\left\{\begin{array}{cc}2 \\ 1 & 1\end{array}\right\}=0$ and $\left\{\begin{array}{cc}1 \\ 2 & 2\end{array}\right\}=0$ respectively.
14. Prove that $T^{2}=\left(k-k_{1}\right)\left(k-k_{2}\right)$, where k is the curvature, T is the torsion and k_{1}, k_{2} are principal curvatures.
15. Show that the geodesic curvature of the curve $u=c$ with the metric, $\lambda^{2}(d u)^{2}+\mu^{2}(d v)^{2}$ is $\frac{1}{\lambda \mu} \frac{\partial \mu}{\partial u}$.
16. Find the differential equation of the geodesic for the metric,

$$
d s^{2}=\left(d x^{1}\right)^{2}+\left\{\left(x^{2}\right)^{2}-\left(x^{1}\right)^{2}\right\}\left(d x^{2}\right)^{2}
$$

17. Using canonical geodesic equation show that the curves $u+v=$ constant are geodesics on a surface with metric,

$$
\left(1+u^{2}\right) d u^{2}-2 u v d u d v+\left(1+v^{2}\right) d v^{2}
$$

