X(4th Sm.)-Mathematics-G/(SEC-B-1)/CBCS

2022

MATHEMATICS — GENERAL

Paper : SEC-B-1

(Mathematical Logic)

Full Marks : 80

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

[Notations have their usual meanings.]

1.	Choose	the	correct	option	and	justify	your	answer	:
----	--------	-----	---------	--------	-----	---------	------	--------	---

- (a) The truth value of $(p \lor q) \land (p \lor \sim q)$ depends on the truth value(s) of
 - (i) p (ii) q (iii) both p and q (iv) none of these.
- (b) If $p \rightarrow q$ is logically equivalent to A, then A may be
 - (i) $\sim p \land q$ (ii) $p \land \sim q$ (iii) $\sim p \lor q$ (iv) $p \lor \sim q$.
- (c) $\sim (\sim (\sim p)))$ is equivalent to
 - (i) p (ii) $\sim \sim p$
 - (iii) tautology (iv) $\sim p$.
- (d) If A is a tautology and $A \rightarrow B$ is a tautology, then
 - (i) B is contradiction (ii) B is a tautology
 - (iii) B is contingent (iv) $B \to A$ is tautology.

(e) Which one of the following is in Prenex normal form?

- (i) $\forall x(x < y) \rightarrow \exists z(x < z \land z < y)$ (ii) $\exists v \sim P \rightarrow \forall v P$ (iii) $\exists v(P \rightarrow Q)$ (iv) $\exists v(P \rightarrow Q) \leftrightarrow (\forall v(Q \rightarrow P)).$
- (f) What is the correct translation of the following statement into mathematical logic? 'Some real numbers are rational'
 - (i) $\exists x (real (x) \lor rational (x))$ (ii) $\exists x (real (x) \land rational (x))$
 - (iii) $\forall x \text{ (real } (x) \rightarrow \text{ rational } (x) \text{)}$ (iv) $\exists x \text{ (rational } (x) \rightarrow \text{ real } (x) \text{)}$.

Please Turn Over

 $(1+1) \times 10$

X(4th Sm.)-Mathematics-G/(SEC-B-1)/CBCS

- (2) (g) Let P(x) be a predicate on a non-empty set D. Then, $\sim \forall x P(x)$ is logically equivalent to
 - (ii) $\sim \exists x P(x)$ (i) $\exists x \sim P(x)$
 - (iv) $\sim \exists x \neg P(x)$. (iii) $\forall x \sim P(x)$
- (h) Let P(x) be 'x is a teacher' and Q(x) be 'x is a singer' where the universe of discourse is set of all persons. Then, $(\forall x P(x)) \lor (\exists y Q(y))$ is
 - (i) all persons are teacher and singer
 - (ii) some are teacher and some are singer
 - (iii) all men are teacher and some are singer
 - (iv) none of these.
- (i) The rule of inference of any first order theory are
 - (i) Modus Ponens (ii) Generalizations
 - (iii) both (i) and (ii) (iv) none of these.
- (j) Which of the following statement formulae is not in disjunctive normal form?
 - (i) $p \lor (\sim q \land r)$ (ii) $\sim q \lor q$
 - (iii) $(p \lor \sim q) \land (\sim p \lor q)$ (iv) p.
 - Unit I
- 2. Answer any two questions :

(a) Find the truth table of the statement formula $(p \rightarrow (q \rightarrow r)) \rightarrow ((p \land q) \rightarrow r)$

- (b) Distinguish between object language and metalanguage with suitable examples.
- (c) Write notes on :
 - (i) Logical consequence
 - (ii) Logical Equivalence
 - (iii) Statement bundle.

Unit - II

- 3. Answer any six questions :
 - (a) Define an adequate system of connectives. Is $\{\vee, \rightarrow\}$ an adequate system of connectives? Justify 1+4 1+4 your answer.
 - (b) Determine whether the statement f_{orm_s} are logically equivalent $(A \lor (B \leftrightarrow C))$ and $((A \lor B) \leftrightarrow (A \lor C)).$ 5
 - (c) Find the CNF of $\sim (p \lor q) \leftrightarrow (p \land q)$.

5

5

2+2+1

5

X(4th Sm.)-Mathematics-G/(SEC-B-1)/CBCS

5

5

5

3+2

(d) Determine the validity of the following arguments :

'If two sides of a triangle are equal, then two opposite angles are equal. Two sides of a triangle are not equal. Therefore, the opposite angles are not equal.' 5

(e) Examine whether the following statement formula is a tautology, contradiction or a contingent

$$\sim ((p \rightarrow q) \leftrightarrow \sim (p \land \sim q))$$

- (f) When is a set of well formed formulae said to be (i) Consistent (ii) maximally consistent? Also, prove that Σ of well formed formulae is consistent if every finite subset of Σ is consistent. 1+1+3
- (g) Find the simpliest equivalent circuit of

- (h) Prove that every theorem of propositional logic is a tautology.
- (i) Prove that $\vdash (A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C))$ where A, B and C are well formed formulae in propositional calculus. 5
- (j) Show that the following are theorems of propositional logic :

(i) $\sim \alpha \rightarrow (\alpha \rightarrow \beta)$

(ii)
$$\sim \sim \alpha \rightarrow \alpha$$

where α and β are well formed formulae for Propositional Calculus. 3+2

Unit-III

4. Answer any four questions :

- (a) Let us consider the predicates P(x) : x is prime, Q(x) : x is even, R(x, y) : x | y, where the universe of discourse is the set \mathbb{Z} of all integers. Translate each of the following into English sentences :
 - (i) $Q(2) \wedge P(2)$
 - (ii) $\forall x (R(2, x) \rightarrow Q(x))$ 1+2+2
 - (iii) $\exists x(Q(x) \land R(x, 6))$
- (b) When is an assertion in Predicate Calculus logically valid? Show whether the following argument is valid :

If x is an odd integer then x^2 is also odd. y is a particular integer that is odd. Therefore y^2 is odd. 1+4

Please Turn Over

(3)

(c) Find the negation of the following statements :

(i)
$$\forall x(x \leq x^2)$$

- (ii) $\exists y \forall x(x + y = 0)$.
- (d) Define an interpretation for the language of first-order Predicate logic and the notion of satisfiability with respect to this interpretation. 5

2+3

5

- (c) Find the Prenex normal form (PNF) of the following first-order formula : $\forall x((\exists y P(y)) \lor ((\exists z Q(z)) \rightarrow R(x)).$
- (f) Restore the parentheses to the following :

(i)
$$(\forall x_2) A_1^1(x_2) \rightarrow A_1^1(x_2)$$

(ii)
$$(\forall x_2)(\exists x_1)A_1^2(x_2x_1)$$

Explain the occurrences (free or bound) of x_1 and x_2 of the wffs given in (i) and (ii) after restoring. 1+1+3

(g) Show that the wff given below is not logically valid

$$\left(\forall x_1 A_1^1(x_1) \to \forall x_1 A_2^1(x_1)\right) \to \left(\forall x_1 (A_1^1(x_1) \to A_2^1(x_1))\right)$$