# ELECTRONICS - HONOURS - PRACTICAL 

# Paper : CC-8P <br> <br> (Operational Amplifiers and Applications) 

 <br> <br> (Operational Amplifiers and Applications)}

Full Marks: 30
The figures in the margin indicate full marks.

## Marks Distribution

- Laboratory Notebook : 05
- Viva : 07
- Experiment : 18

Answer any one question.

1. (a) Design an amplifier with voltage gain 10 for an inverting configuration using an op-amp. Take at least 8 readings and draw the graph.
[Theory - 2, Design - 2, Circuit drawing - 1, Apparatus - 1, Data collection - 2, Graph - 2] 10
(b) Design a voltage follower using an op-amp. Take at least 8 readings and draw the graph. [Theory - 2, Circuit drawing - 1, Apparatus - 1, Data collection - 2, Graph - 2]
2. (a) Design an amplifier with voltage gain 5 for a non-inverting configuration using an op-amp. Take at least 8 readings and draw the graph.
[Theory-2, Design-2, Circuit drawing - 1, Apparatus - 1, Data collection - 2, Graph - 2] 10
(b) Design a unity gain buffer using an op-amp. Take at least 8 reading and draw the graph. [Theory - 2, Circuit drawing - 1, Apparatus - 1, Data collection - 2, Graph - 2]
3. (a) Design an analog adder with 3 voltage inputs using an op-amp. Take at least 8 readings. Compare the experimental result with the theoretical result and comment on it.
[Theory - 2, Design - 2, Circuit drawing - 1, Apparatus - 1, Data collection - 2, Graph - 2] 10
(b) Design a unity gain buffer using an op-amp. Take at least 8 reading and draw the graph. [Theory - 2, Circuit drawing - 1, Apparatus - 1, Data collection - 2, Graph - 2]
4. (a) Design an analog subtractor using an op-amp. Take at least 8 readings. Compare the experimental result with theoretical and comment on it.
[Theory - 2, Design - 2, Circuit drawing - 1, Apparatus - 1, Data collection - 2, Graph - 2] 10
(b) Design a voltage follower using an op-amp. Take at least 8 reading and draw the graph. [Theory - 2, Circuit drawing - 1, Apparatus - 1, Data collection - 2, Graph - 2]
5. Design a first-order low-pass filter using op-amp having a cut-off frequency of 5 kHz and passband voltage gain 2. Collect necessary data to plot frequency vs gain curve. Compare the experimental result (cut-off frequency and passband gain) with theoretical values and comment on it.
[Theory - 2, Design - 2, Circuit drawing - 2, Apparatus - 1, Data collection - 5, Graph - 4, Comparison - 2]
6. Design a first-order high-pass filter using op-amp having a cut-off frequency of 1 kHz and passband voltage gain 4 . Collect necessary data to plot frequency vs gain curve. Compare the experimental result (cut-off frequency and passband gain) with theoretical values and comment on it.
[Theory - 2, Design - 2, Circuit drawing - 2, Apparatus - 1, Data collection - 5, Graph - 4, Comparison - 2]
7. Design an RC Phase shift oscillator using op-amp for a given frequency of 1 kHz and observe the output waveform in a CRO. Draw a graph of the output waveform from the relevant data obtained from the CRD. Measure the frequency of the waveform.
[Theory - 2, Design - 2, Circuit drawing - 2, Apparatus - 2, Data collection - 4, Graph - 4,
8. Design an Wien Bridge oscillator using op-amp for a given frequency of 2 kHz and observe the output waveform in a CRO. Draw a graph of the output waveform from the relevant data obtained from the CRD. Measure the frequency of the waveform.
[Theory - 2, Design - 2, Circuit drawing - 2, Apparatus - 2, Data collection - 4, Graph - 4,
Measurement - 2]
9. Design an astable multivibrator using IC 555 for a given frequency of 1 kHz and $50 \%$ duty cycle. Observe the output waveform in CRO and draw the graph. Compare the experimental result with theoretical value (frequency and duty cycle) and comment on it.
[Theory - 2, Design - 2, Circuit drawing - 2, Apparatus - 2, Data collection - 4, Graph - 4, Measurement - 2]
10. Construct and study the adjustable voltage regulator (10V) using fixed voltage regulator IC7805. Vary input voltage from 12 V to 30 V and record the output voltages. Vary the load resistance in steps (by keeping input voltage constant) and measure the regulator output and plot the graph.
[Theory - 2, Design - 2, Circuit drawing - 2, Apparatus - 3, Data collection - 5, Graph - 4] 18

## 2022

## ELECTRONICS - HONOURS - PRACTICAL

Paper : CC-9P<br>(Digital Electronics and VHDL)<br>Full Marks : 30

The figures in the margin indicate full marks.

## Marks Distribution :

- Laboratory Notebook : 05
- Viva voce : 07
- Experiment : 18

Candidate has to perform one of the following experiments.

1. Design OR, AND and NOT gates using NAND gates only and verify their truth table.
[Theory $-2+2+1$, Circuit design and implementation $-2+2+1$, Record of Data $-2+2+1$, Discussion $-1+1+1$ ]

18
2. (a) Design the following Boolean identity using basic gates

$$
(A+B) \cdot(A+C)=A+B C
$$

Also verify their truth table. The outputs are to be measured in volts.
[Theory - 2, Circuit design and implementation - 4, Record of Data - 3, Discussion - 1]
(b) Design XOR gate using NAND gates only and verify its truth table.
[Theory - 2, Circuit design and implementation - 3, Record of Data - 2, Discussion - 1].
3. (a) Design the following Boolean identity using basic gates

$$
A B+\bar{A} C=(A+C) \cdot(\bar{A}+B)
$$

Also verify the truth tables. The outputs are to be measured in volts.
[Theory - 2, Circuit design and implementation - 4, Record of Data - 3. Discussion - 1]
(b) Design XOR gate using basic gates and verify its truth table.
[Theory - 2, Circuit design and implementation - 3, Record of Data - 2, Discussion - 1]
4. (a) Construct a half-adder circuit using minimum number of NAND gates and verify its truth table. The outputs are to be measured in volts.
[Theory -2 , Circuit design and implementation -3 , Record of Data -2 , Discussion - 1 ]
(b) Construct a full-adder circuit using basic gates and verify its truth table. The outputs are to be measured in volts.
[Theory -2 , Circuit design and implementation - 4, Record of Data - 3, Discussion - 1]
5. (a) Construct a half-subtractor circuit using NAND gates and verify its truth table. The outputs are to be measured in volts.
[Theory -2 , Circuit design and implementation - 3 , Record of Data -2 , Discussion - 1]
(b) Construct a full-subtractor circuit using basic gates and verify its truth table. The outputs are to be measured in volts.
[Theory -2 , Circuit design and implementation -4 , Record of Data -3 , Discussion - 1]
6. (a) Design a $4: 1$ multiplexer circuit using NAND gates and verify its truth table. The outputs are to be measured in volts.
[Theory - 3, Circuit design and implementation - 4, Record of Data - 3, Discussion - 1]
(b) Verify the following Boolean identity using basic gates

$$
A+\bar{A} B=A+B
$$

[Theory - 2, Circuit design and implementation - 2, Record of Data - 2, Discussion - 1]
7. Construct (i) SR flip-flop and (ii) D-flip-flop using NAND gates and verify their truth tables. The outputs are to be measured in volts.
[Theory - 2+2, Circuit design and implementation - 4+4, Record of Data - 2+2, Discussion - $1+1$ ]
8. Use negative edge triggered JK flip-flops to construct a 4-bit ripple counter which counts in the up direction and verify its truth table. The outputs are to be measured in volts.
[Theory - 4, Circuit design and implementation - 7, Record of Data - 5, Discussion - 2] 18
9. Construct a 'Mod-10' asynchronous counter using negative edge-triggered J-K flip-flops and verify its truth table. Outputs are to be measured in volts.
[Theory - 4, Circuit design and implementation - 7, Record of Data - 5, Discussion - 2] 18
10. Write VHDL code to realize OR, AND and NOT gates and verify their truth tables. [Theory $-2+2+2$, VHDL code $-2+2+2$, Simulation $-2+2+2$ ]
11. Write VHDL code to design half-adder and full-adder circuits and verify their truth tables. [Theory $-2+3$, VHDL code $-3+4$, Simulation $-3+3$ ]
12. Write VHDL code to design Half-subtractor and Full-subtractor circuits and verify their truth table.
[Theory $-2+3$, VHDL code $-3+4$, Simulation $-3+3$ ]
13. Write VHDL code to design a $4: 1$ Multiplexer and $2: 4$ Decoder using basic gates and also verify their truth tables.
[Theory $-2+2$, VHDL code $-4+4$, Simulation $-3+3$ ]

## 2022

## ELECTRONICS - HONOURS - PRACTICAL

## Paper: CC-10P

(Signals and Systems)

## Full Marks : 30

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

| Laboratory Notebook | -5 |
| :--- | ---: |
| Viva voce | -7 |
| Experiment | -18 |
| $\quad$ Program -12 |  |
| Output -6 |  |

Answer any one question.

1. Write a Scilab/Matlab Program to generate the following continuous time signals :
(a) Unit step signal
(b) Sinusoidal signal
(c) Ramp signal.

Program $-(4+4+4)=12$; Output $-(2+2+2)=0$
2. Write a program in Scilab/Matlab to generate the following discrete time signals :
(a) Unit impulse signal
(b) Unit step signal
(c) Ramp signal.

Program $-(4+4+4)=12$; Output $-(2+2+2)=6$
3. Write a program in Scilab/Matlab to generate the following signals :
(a) $x(n+2)$ and $x(n-3)$ when $x(n)=\{1,2,3,4,5\}$.
(b) $2 x(n)$ when $x(n)\{1,2,3,4,5\}$.

Program $-(6+6)=12$; Output $-(3+3)=6$
4. Write a program in Scilab/Matlab to perform linear convolution of any two given signals [Signals to be provided by the examiner].
Program - 12; Output - 6
5. Write a program in Scilab/Matlab to perform Fourier transform of any given continuous signal [Signal to be provided by the examiner].
Program - 12; Output - 6
6. Write a program in Scilab/Matlab to perform Laplace transform of any given continuous time signal. Program - 12; Output - 6

