2022

CHEMISTRY - HONOURS

Paper: CC-5

Full Marks: 50

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer question no. 1 and any eight from the rest.

1. Answer any ten questions from the following:
(a) Show that the volume $V=f(P, T)$ for a fixed amount of ideal gas is a state function.
(b) Justify that absolute zero temperature cannot be attained since efficiency of a reversible Carnot engine must be less than 1 .
(c) State whether the derivatives are extensive or, intensive $\left(\frac{\partial V}{\partial T}\right)_{P}, \frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{P}$.
(d) State with reason what will happen (in terms of cooling or, heating) if H_{2} gas is expanded adiabatically in a closed system.
(e) Is Hess's law a corollary of the 1st law of thermodynamic?
(f) What is meant by an 'electrode reversible with respect to an ion'?
(g) The entropy of a closed system can never decrease - justify or, criticize.
(h) Show that the mean ionic activity ($a \pm$) of ions with respect to a solution of an electrolyte $\mathrm{K}_{3} \mathrm{PO}_{4}$ in water, is $2.28 \mathrm{C} \Varangle \pm$ ($\mathrm{C}=$ Concentration), where $\gamma \pm$ is the mean ionic activity coefficient.
(i) Explain why the amide ion in liquid ammonia has abnormally high transport number.
(j) The glass electrode functions only in aqueous solutions- justify or, criticize.
(k) If $5 \mathrm{~mol} \mathrm{dm}^{-3}$ of NaOAc and $5 \mathrm{~mol} \mathrm{dm}^{-3}$ of AcOH are mixed, pH should be equal to Pk_{a}. - Comment if you disagree.
2. (a) The reaction, Reactants $\left(T_{0}, P\right) \rightarrow$ Products $\left(T_{f}, P\right)$ is carried out under adiabatic condition and occurs in following two steps.

Step I : Reactants $\left(T_{0}, P\right) \rightarrow$ Products $\left(T_{0}, P\right) \quad \Delta_{r} H_{T_{0}}$
Step II : Reactants $\left(T_{0}, P\right) \rightarrow$ Products $\left(T_{f}, P\right), \Delta_{r} H_{2}$
(i) Show that $T_{f}=-\frac{\Delta_{r} H_{T_{0}}}{C_{p} \text { (products) }}+T_{0}$

Assume that G_{p} (reactants) and C_{P} (products) are independent of temperature.
(ii) Justify T_{f} is adiabatic flame temperature.
(b) Construct a cell for the overall cell reaction : $\mathrm{Pb}(\mathrm{s})+2 \mathrm{AgCl}(\mathrm{s})+2 \mathrm{~L}^{-}(\mathrm{aq}) \rightleftharpoons 2 \mathrm{Ag}^{(\mathrm{s})}+\mathrm{Pbl}_{2}(\mathrm{~s})+2 \mathrm{Cl}^{-}(\mathrm{aq})$.
3. Ideal gas (I mol, 208K, V) Free expansion, Ideal gas ($1 \mathrm{~mol}, 298 \mathrm{~K}, 2 \mathrm{~V}$)

Reversible

(i) Calculate $\int \frac{d Q}{T}$ for the cycle.
(ii) Calculate $\Delta S_{\text {cycle }} \Delta S_{\text {forward }}$ and $\Delta S_{\text {backward }}$
(iii) Show that $\Delta S_{\text {forward }} \frac{Q_{\text {fonward }}}{T}$.
4. (a) 0.5 mole water at 1 atm pressure undergoes the process : $\mathrm{H}_{2} \mathrm{O}\left(1,-10^{\circ} \mathrm{C}\right) \rightarrow \mathrm{H}_{2} \mathrm{O}\left(\mathrm{s},-10^{\circ} \mathrm{C}\right)$. Compute ΔS for the process from the following data : Specific heat capacity of water and ice over the temperature range is 1.0 and $0.5 \mathrm{cal} . \mathrm{deg}^{-1} \mathrm{~g}^{-1}$ respectively; latent heat of fusion of ice is $80.0 \mathrm{cal.g}^{-1}$ at $\theta^{\circ} \mathrm{C}$. Comment on the $\Delta \mathrm{S}$ of surrounding and universe.
(b) Graphically show that equivalent conductance at infinite dilution values can be obtained by plotting equivalent conductance vs. $\sqrt{\mathrm{C}}$ for strong electrolytes but not for weak electrolytes.
5. (a) Using Le Chatelier principle, establish the following relation :
$\left(\frac{\partial \xi_{e q}}{\partial T}\right)_{P}=\frac{\Delta H}{T G_{e q}^{\prime}} \&\left(\frac{\partial \xi_{e q}}{\partial P}\right)_{T}=\frac{-(\Delta \mathrm{vg}) R T}{P G^{\prime \prime} e q}$ (for an ideal gas, $\Delta \mathrm{vg}$ is the difference between number of moles of gaseous products and reactants.)
(b) Comment on the sign of $G^{\prime \prime}{ }_{e q}$ ((where terms have their usual meaning)
6. Develop equations for the reversible isothermal $P-V$ work of a gas that obeys (i) van der Waals equation with $a=0$ and (ii) van der Waals equation with $b=0$. Calculate the work done by the gas for doubling the volume for case (i) where $b=0.05 \mathrm{Lmol}^{-1}$, for case (ii) where $\mathrm{a}=4.2 \mathrm{~L}^{2} \mathrm{~atm} \mathrm{~mol}^{-2}$ and also for ideal gas. Take $V_{i}=1 L, n=1 \mathrm{~mol}, T=298 \mathrm{~K}$.
Explain the reason of the order W (i) < W(ideal) < W(ii).
7. (a) When 1 mol glucose is oxidized at 298 K the following reaction is observed :
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~S})+6 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
Given $\Delta \mathrm{U}_{\mathrm{r}}=-2808 \mathrm{~kJ} \mathrm{~mol}^{-1}$

$$
\Delta_{\mathrm{r}} \mathrm{~S}=+182.4 \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
$$

for the above reaction at 298 K . How much of this energy change can be extracted as :
(i) heat at constant pressure
(ii) work
(iii) compare the values of $\Delta \mathrm{U}$ and maximum work available from the reaction and comment on the data.
(b) Show that $\left[\frac{\partial(\Delta \mathrm{G} / \mathrm{T})}{\partial(1 / T)}\right]_{p}=\Delta H_{-}$.
8. (a) 'The standard state of a real gas is a hypothetical state in which the gas is at a pressure p° and behaving perfectly' - how do you justify the validity of this assumption?
(b) The Helmholtz energy of one mole of a gas is expressed as

$$
A=-(a / V)-R T \ln (V-b)+f(T)
$$

where ' a ' and ' b ' are constants. Set up an expression for the pressure of the gas.
9. The emf of the cell with transference :

$$
\mathrm{H}_{2}|\mathrm{HCl}(a \pm=0.00905) \vdots \mathrm{HCl}(a \pm=0.0175)| \mathrm{H}_{2}
$$

at 298 K is 0.028 V . The corresponding cell without transference has an emf of 0.01696 V . Calculate the transference number of H^{+}ion and the value of the junction potential.
10. (a) For a given aqueous solution of sucrose - using the integrated Gibbs-Duhem equation - show that. $d \ln \gamma_{B}=-\left(\frac{x_{A}}{x_{B}}\right) d \ln \gamma_{A}$, at constant $T \& P$.
γ_{A} and γ_{B} being the activity coefficients of water and sucrose, respectively.
(b) Using the expression of coefficient of performance [(COP) $\max _{\text {max }}$] of refrigerator, justify that attaining absolute zero leads to the violation of perpetual motion of first kind.
11. (a) The $p k$ values of $\mathrm{H}_{3} \mathrm{PO}_{4}$ are : $p k_{1}=2.1, p k_{2}=7.2$ and $p k_{3}=12.0$. Calculate the pH of 0.1 M aqueous solution of $\mathrm{Na}_{2} \mathrm{HPO}_{4}$.
(b) The solubility product increases with ionic strength. Explain why.
12. (a) An ideal operating Carnot engine operates between two heat reservoirs at $1000^{\circ} \mathrm{C}$ and $300^{\circ} \mathrm{C}$. Another heat engine operates within the same temperature limit. In the later engine, $2 / 5$ th of the heat absorbed at the higher temperature is wasted as heat discharged at the lower temperature. State Carnot's theorem-1 and analyze whether it is possible to construct such an engine in reality or not?
(b) A solute is dissolved in a mixture of two immiscible liquid solvents A and B. If in B, the solute gets dimerised, then from thermodynamic consideration, show that the ratio $\frac{C_{A}}{\sqrt{C_{B}}}$ will be constant at a particular temperature. [$C_{A} \& C_{B}$ denotes concentrations of solute in respective solvent.]
13. (a) Set up the cell and calculate the equilibrium constant of the reaction between Fe^{+2} and MnO_{4}^{-} in 1 M acetic acid medium.

Given: $\mathrm{E}_{\mathrm{Fe}^{3} / \mathrm{Fe}^{+2}=0.77 \text { volt }}^{0}$

$$
\mathrm{E}_{\mathrm{MnO}_{4}^{-} \mathrm{Mn}^{+2} \mathrm{H}^{+}}=1.51 \text { volt, at } 298 \mathrm{~K}
$$

(b) 10 ml of 0.1 M NaOH is added to solution (i) and (ii).

Solutions (i) and (ii) are taken in conductivity cells of cell-constant $1.00 \mathrm{~cm}^{-1}$.

Observations

		Observations
(i)	10 ml of $0.1(\mathrm{M})$ $\mathrm{CH}_{3} \mathrm{COOH}+10 \mathrm{ml}$ of $0.1(\mathrm{M}) \mathrm{NaOH}$	Conductance of the solution changed from A Siemens to B Siemens
(ii)	10 ml of $0.1(\mathrm{M}) \mathrm{HCl}+10 \mathrm{ml}$ of $0.1(\mathrm{M}) \mathrm{NaOH}$	Conductance of the solution changed from C Siemens to D Siemens

Justify that $\mathrm{A}-\mathrm{B}<0$ and $\mathrm{C}-\mathrm{D}>0$.

