2022

CHEMISTRY - HONOURS

Paper: CC-6 (Inorganic Chemistry)

Full Marks : 50

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words

 as far as practicable.Question no. 1 is compulsory and answer any eight questions from the rest.

1. Answer any ten questions :
(a) Which has the higher second ionisation energy : Cu or K?
(b) Give an example of ambidentate ligand with proper complexes.
(c) Give one use each of Xe and Ar.
(d) Write the structure of bis(en) Co (III)- μ-imido- μ-hydroxido-bis(en) Co (III) ion.
[en = ethylenediamine]
(e) Write the manganese species generated in the reaction when aq. solution of $\mathrm{Mn}(\mathrm{II})$ is boiled with potassium perdisulfate in presence of little AgNO_{3}. Mention the role of AgNO_{3}.
(f) Predict the products of the following reaction :
$\mathrm{CF}_{3} \mathrm{I}+\mathrm{OH}^{-} \rightarrow \mathrm{A}+\mathrm{B}$
(g) Mention an example each of an interstitial and covalent hydride.
(h) Draw the structure of SO_{3}^{2-} ion. Mention its shape.
(i) Write any one chemical property of Be and Al to show the diagonal relationship amongst them.
(j) What are organo-silicon compounds called? Give one example.
(k) What happens when $\mathrm{S}_{2} \mathrm{~N}_{2}$ is kept of $0^{\circ} \mathrm{C}$ for long time?
(l) Which effect is mainly responsible for very high electron affinity of Au ?
2. (a) Catenation tendency among the following Gr-16 elements follow the trend: $\mathrm{O}<\mathrm{S}>\mathrm{Se}-$ explain.
(b) Difference in IE_{1} between C and Si is greater than that between Si and Ge . State reasons.
3. (a) Draw the structures of the isomers of $\left[\mathrm{Co}(\mathrm{en})\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]^{+}$and indicate the types of isomerism.
(b) Explain the following order of ionization energies (IE_{1} in $\mathrm{kJ} / \mathrm{mole}$) : ${ }_{29} \mathrm{Cu}(745),{ }_{30} \mathrm{Zn}$ (906), ${ }_{31} \mathrm{Ga}$ (579)
4. (a) Calculate the effective nuclear charge of 3 d and 4 s electrons of $\mathrm{Co}(\mathrm{Z}=27)$ using Slater's rule and identify which type of electron will be lost when Co forms a positive ion.
(b) Solubilities of alkali metal hydroxides in water follow the order:
$\mathrm{LiOH}<\mathrm{NaOH}<\mathrm{KOH}<\mathrm{RbOH}<\mathrm{CsOH}-$ Justify.
5. (a) Calculate the Allred-Rochow electronegativity of Zn having its covalent radius 125 pm .
(b) No simple salts of B^{3+} are known but those of Al^{3+} are numerous - Justify.
6. (a) Give the examples of Fluoridating, Fluorinating and Oxidising properties of XeF_{4}.
(b) Give the structure of basic beryllium nitrate.
7. (a) Show by chemical reactions the method for the synthesis of Borazines. What happens when borazine is subjected to prolonged heating at $380^{\circ} \mathrm{C}$?
(b) Explain the enhanced stability of $\left[\mathrm{Ni}(\mathrm{en})_{3}\right]^{2+}$ over $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ from thermodynamic point of view.
8. (a) Compare and discuss the allotropic modifications of N and P .
(b) Lanthanides are placed in just one group in the Periodic Table but transition series elements are not-explain.
9. (a) Explain the bonding in XeF_{2} through molecular orbital treatment.
(b) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$ is stronger acid than $\mathrm{H}_{2} \mathrm{SO}_{4}$ - Justify.
10. (a) Explain the observations with equations:
(i) When iodine-azide solution is mixed with little $\mathrm{Na}_{2} \mathrm{~S}$, its brown colour fades away with evolution of bubbles.
(ii) Aqueous sodium thiosulfate gets turbid when allowed to stand for long time.
(b) NO_{2} is readily dimerized whereas NO does not - Explain.
11. (a) Complete the following reactions:
(i) $\mathrm{ClF}+\mathrm{BF}_{3} \rightarrow$
(ii) $\left(\mathrm{NPCl}_{2}\right)_{3}+\mathrm{CH}_{3} \mathrm{MgI} \rightarrow$
(iii) $2 \mathrm{XeO}_{2} \mathrm{~F}_{2}+\mathrm{SiO}_{2} \rightarrow$
(b) Place the following species in appropriate classes :
$\mathrm{BrF}_{5}, \mathrm{CN}^{-}, \mathrm{I}_{9}-, \mathrm{Br}_{3}{ }^{+}$.
12. (a) Draw the actual structures of $\mathrm{XeO}_{2} \mathrm{~F}_{2}$ and $\mathrm{XeO}_{6}{ }^{4}$. Hence prediet the actual shapes.
(b) Conductivity of $\mathrm{BrF}_{3}(\mathrm{I})$ increases on addition of $\mathrm{KF}-$ Justify.
13. (a) Draw the structures of $\mathrm{P}_{4} \mathrm{O}_{6}$ and $\mathrm{P}_{4} \mathrm{O}_{10}$. Compare $\mathrm{P}-\mathrm{O}$ bond lengths in $\mathrm{P}-\mathrm{O}-\mathrm{P}$ bridges in these two compounds.
(b) Predict the feasibility of the following reactions :
(i) $\mathrm{SnCl}_{4} \xrightarrow{\Delta}$
(ii) $\mathrm{PbCl}_{4} \xrightarrow{\Delta}$. $\quad 3+2$
