CHEMISTRY — HONOURS

Paper: CC-3

(Organic Chemistry - 2)

Full Marks: 50

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer question no. 1 and any eight questions from the rest.

1. Answer any ten questions:

1×10

- (a) Draw the staggered conformation of erythro-3-aminopentan-2-ol.
- (b) 1,2-cyclopentadione exists almost exclusively in the enol form. Explain.
- Give an example of ambident nucleophile.
- Draw the anti-conformation of butanoic acid when rotated through C2-C3 bond.
- Give an example of ring-chain tautomerism.
- What type of reaction is halogenation of alkanes?
- (g) Represent but-2-ene by its Re-Si face.
- (h) Draw the tautomeric form of $(CH_3)_2CH N = O$.
- Which reaction $S_N 1$ or $S_N 2$ is favoured in α -halocarbonyl compounds?
- Give a mathematical relationship between standard free energy of a reaction with the equilibrium constant.
- Arrange the following anions in order of increasing nucleophilicity: R_2N , R_3C , F, RO(k) What factors favour TCP?
- (m) Give chemical structure of a proton sponge.
- 2. (a) Draw the structure of (R)-2,2'-dichloro-6,6'-dinitrobiphenyl system. Comment on the chirality of 2,2',6,6'-tetra-bromobiphenyl.

I
$$CH_3 CH_3$$

$$CH_3 CH_3$$

$$CH_3 CH_3$$
AgNO₃, H_2O , Δ

$$CH_3 CH_3$$

$$CH_3 CH_3$$

Draw the structure of [A] and show mechanism of its formation.

Please Turn Over

Z(2nd Sm.)-Chemistry-H/CC-3/CBCS

(2)

3. (a)

Information: The above reaction shows PKIE.

- (i) What is meant by PKIE?
- (ii) How is PKIE measured?
- (iii) From the above information, indicate r.d.s of the above reaction.
- (b) Comment on the relative enol content of

4. (a) 2,4,6-trinitro-N,N-dimethylaniline is 40,000 times stronger base than 2,4,6-trinitroaniline. Explain.

- (b) The torsional barriers in fluoroethane and iodoethane are remarkably similar (3.3–3.5 k cal mol⁻¹).

 Why?

 3+2
- 5. (a) Pick out the pro-S hydrogen in the given molecules.

CH3 HB

 $C = C = C_{\text{intr}} H_b$

$$H_a$$
 H_b
 CI
 H_b
 CH_3
 CH_3
 CH_3
 CH_3

ÒEt

(II)

(i) (ii) (iii) (iii) (b) Which of the following two reactions will have higher equilibrium constant and why?

$$\Delta / -H_2O$$

(ii)
$$O$$
 + EtOH $\Delta / -H_2O$ + O

3+2

3+2

6. (a) State the criteria for a chiral biphenyl system to be resolvable. Which of the following molecules is resolvable and why?

(b) Name one (i) polar protic solvent, (ii) polar aprotic solvent.

3+2

- 7. (a) Write down the products obtained when butane-1,3- diene is subjected to bromination at (i) low temperature and (ii) high temperature. Draw the corresponding energy profile diagram.
 - (b) Which one is a better nucleophile in acetone— Bro or Io? Explain.

3+2

- 8. (a) Only one of the two diastereoisomers of stilbene dichloride [PhCH(Cl)—CH(Cl)Ph] undergoes dehydrohalogenation with pyridine at 200°C. Identify the diastereoisomer. Explain why the other does not undergo such elimination.
 - (b) With respect to chlorination of alkane, fill in the blanks shown below:
 - (i) The transition state closely resembles to _____ (reactant / intermediate)
 - (ii) Transition state appears _____ (earlier / later) in the reaction.

3+2

- **6.** (a) Compare pK_{a1} and pK_{a2} between fumaric and maleic acids.
 - (b) Give an application of nucleophilic catalysis in organic reactions.

3+2

- 10. (a) Comment on the optical properties of the product(s) in the following reaction:

 threo-3-phenyl-2-butyl tosylate

 acetic acid
 - (b) Explain the fact that o-hydroxybenzoic acid is more acidic compared to o-methoxybenzoic acid.

 3+2
- 11. (a) Designate R/S in the following compounds showing the priority of the ligands.

(i)
$$\frac{Me}{H}$$
 (ii) $\frac{CO_2Et}{CN}$ (iii) $\frac{H}{CO_2H}$ (iii) $\frac{H}{CO_2H}$ $\frac{CO_2H}{NO_2}$

(b) If bromine is added to the <u>Re</u> - <u>Re</u> face of fumaric acid, what will be the absolute configurations of the chiral centres formed?

(4)

12. (a) Draw the energy profile diagram arising out of rotation around C – C bond in ethylene glycol. Label maxima and minima with appropriate conformation.

Draw the preferred conformer of 1-bromopropane with appropriate reason.

3+2

13. (a) Neopentyl chloride cannot be prepared from neopentyl alcohol. Explain the observation.

Which mechanism, S_N1 or S_N2 is favourable for the following compounds? Explain.

3+2

2023

CHEMISTRY — HONOURS

Paper: CC-4

(Inorganic Chemistry - 2)

Full Marks: 50

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer question no. 1 and any eight questions from the rest.

1. Answer any ten questions:

1×10

- Arrange the following in order of increasing thermal stability: MgSO₄, CaSO₄, SrSO₄, BaSO₄.
- (b) Predict the increasing bond angle sequence of the following:

 $\mathrm{CH_4}$, $\mathrm{CH_3^-}$, $\mathrm{CH_3^+}$.

- (c) Categorize the compounds with respect to Schottky and Frenkel defects: AgBr, ZnS, NaCl, KCl.
- (d) Predict the structure of XeOF₄ indicating the hybridization of the central element.
- (e) Which of the following has greater melting point?

RbCl and AgCl.

- (f) Find the total number of lone pairs of electrons on the central atom of SF₄.
- (g) Predict the unstable nucleii and write the mode of decay— ${}_{9}^{18}$ F and ${}_{10}^{18}$ Ne.
- (h) Write the number of unpaired electrons in the HOMO of NO.
- Find the O O bond order in O_2^{2-} .
- (i) Predict the order of solubility in water of the following:

AgF, AgCl, AgBr and AgI.

- Give an example of an isotope which is used in the treatment of human cancer.
- Write an example of an odd electron molecule.

70 Ind	(and)	-Chemistry-HICC-4ICBCS (2)	
7	(a)	Predict the shapes of the following species and mention the type of hybrid orbitals on the ceratom:	ntral
		$[I_3]^+$, XeO_2F_2 and SOF_4 .	
	(b)	How and under what condition can an insulator be converted to a semiconductor?	3+2
3.	(a)	Write the Kapustinskii equation and explain how it is helpful in finding the lattice energy cionic solid, where the crystal structure is not known.	of an
	(b)	Find the minimum energy required to split an ${}^{16}_{8}$ O nucleus into ${}^{4}_{2}$ He and ${}^{12}_{6}$ C nucleus. The bin	ıding
	,	energies of ${}_{8}^{16}$ O, ${}_{6}^{12}$ C and ${}_{2}^{4}$ He are 127.6, 92.1 and 28.3 MeV, respectively.	3+2
(4)	(a)	Construct the MO energy level diagram of CO2 and find the C-O bond order in the molec	ule.
	(b)	The C-Cl distance in CH ₃ Cl and CF ₃ Cl are 1.78 Å and 1.75 Å, respectively. Explain.	3+2
5/	(a)	Compare the σ -donor and π -acceptor property of CN and NO through MO approach.	
	(b)	Which hydrogen bond would you expect to be stronger and why?	
	/	$S - H \cdots O$ and $S \cdots H - O$.	3+2
(6)	(a)	Calculate the electron affinity of iodine from the following data:	
	()	Formation energy of $NaI(s) = -289 \text{ kJ mol}^{-1}$	
		Sublimation energy of Na(s) = $108.8 \text{ kJ mol}^{-1}$	
		Dissociation energy of $I_2(g) = 214.2 \text{ kJ mol}^{-1}$	
		Ionization energy of $Na(g) = 497.3 \text{ kJ mol}^{-1}$	
		Lattice energy of NaI(s) = $-694.7 \text{ kJ mol}^{-1}$	
	(b)	What do you mean by 'Fissile nucleus'? Name one of such nucleii with atomic and mass numb	ers.

- s. 3+2
- (a) BF₃, PF₃ and ClF₃ are AX₃ type of molecule, but their structures and bond angles are different. Explain.
 - (b) From the radius ratio (r_+/r_-) values, CdS (0.52) and HgS (0.55) are expected to adopt the NaCl structure but they actually crystallize in the ZnS structure. Explain. 3+2
- (a) Explain the following:
 - (i) Li₃N can be formed while Na₃N is not.
 - (ii) The iodine atom in IF₅ sits slightly below the plane of the base of the square pyramid.
 - (b) N_3^- is more resonance stabilized than HN_3 . Explain. 3+2

3+2

9. (a) Justify the following: (i) Methanol, CH₃OH, has a much higher boiling point than methyl mercaptan, CH₃SH. (ii) Solubility of ortho-nitrophenol and para-nitrophenol in water are different. (b) The nucleus 23 Ne decays by β -emission. Write down the decay equation and determine the maximum kinetic energy of the electron emitted. (Ignore the mass of anti-neutrino) Mass of 23 Ne = 22.994466 u Mass of 23 Na = 22.989770 u 3+2 16. (a) ZnO and SnO₂ are white when cold but they look yellow when hot. Explain schematically the theory behind it. (b) AlCl₃ is covalent, but it behaves like an ionic compound on hydration. — Justify. 3+21. (a) Draw the Lewis structure of SO_2Cl_2 and find the formal charge on S and O. (b) Predict and justify the order of dipole moment of CH₃Cl and CHCl₃. 3+2(a) Explain the structure of PCl₃F₂ in the light of Bent's rule. (b) $PbCl_2$ is white while PbI_2 is coloured. — Justify. 3+213. (a) CH₃NCS is angular while SiH₃NCS is linear. — Explain.

(b) What is radiocarbon dating?