2024

ECONOMICS — HONOURS

Paper: CC-10

(Introductory Econometrics)

Full Marks: 65

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Group - A

1. Answer any ten questions:

2×10

- (a) State whether the following statements are true or false:
 - (i) The population parameters are variables while the sample estimators are constant.
 - (ii) Autocorrelation is a problem related primarily to time-series data.
 - (iii) The t test of significance requires that $\hat{\beta}_1$ and $\hat{\beta}_2$ follow normal distribution.
 - (iv) If the disturbance term in the CLRM is not normally distributed, the OLS estimators are not unbiased.
- (b) Let the population model be given by:

 $gpa = \beta_0 + \beta_1$ study + U_i ; where gpa = the university grade point average and study = hours spent per week studying.

- (i) What is the expected sign of β_1 ?
- (ii) What is the interpretation of β_0 ?
- (c) Which of the following can cause the usual OLS t statistics to be invalid?
 - (i) Heteroskedasticity.
 - (ii) A simple correlation coefficient of 0.95 between two independent variables that are in the model.
 - (iii) Omitting an important explanatory variable.
- (d) When is an estimator said to be biased?
- (e) The regression equation of Y on X estimated on the basis of 10 observations is given by:

$$\hat{Y}_i = \hat{\alpha} + \hat{\beta} X_i,$$

where $\sum Y_i = 1110$; $\sum X_i = 1700$; $\sum X_i Y_i = 205500$; $\sum X_i^2 = 322000$

Determine $\hat{\beta}$.

Please Turn Over

(2)

(f) It is given that

Source of variation	Sum of Squares	Degrees of Freedom
RSS	337.27	08
TSS	8890.00	09

Determine the \bar{R}^2 .

- (g) Let *kids* denote the number of children ever born to a woman and *educ* denote years of education for the woman. A simple model relating number of children ever born to a woman to years of education is $kids = \beta_0 + \beta_1 \ educ + U_i$. Mention any two factors contained in U_i .
- (h) Suppose you want to examine if there is a correlation between amount of food eaten and blood pressure, while controlling for body weight. If correlation coefficient between blood pressure and food eaten (r_{12}) is 0.87, correlation coefficient between blood pressure and body weight (r_{13}) is 0.66 and correlation coefficient between food eaten and body weight (r_{23}) is 0.57, then find the correlation between blood pressure and food eaten eliminating the effect of body weight.
- (i) In a two variable PRF, $E(Y|X_i) = \beta_1 + \beta_2 X_i$. If the slope coefficient is zero, then what does that mean?
- (j) How can you measure the reliability of the least squares estimators?
- (k) What additional assumptions are required in the multiple regression model compared to the two variable regression model?
- (1) Suppose the true Cobb-Douglas equation $\ln Y_i = \alpha_0 + \alpha_1 \ln L_{1i} + \alpha_2 \ln L_{2i} + \alpha_3 \ln K_i + U_i$ is wrongly written as: $\ln Y_i = \beta_0 + \beta_1 \ln L_{1i} + \beta_2 \ln K_i + U_i$.
 - (i) Will the condition $E(\hat{\beta}_1) = \alpha_1$ and $E(\hat{\beta}_2) = \alpha_3$ be satisfied?
 - (ii) Will the answer in (i) hold if it is known that L_2 is an irrelevant input in the production function?
- (m) If $r_{12} = 0.97$; $r_{13} = 0.99$ and $r_{23} = 0.97$, find $R_{1.23}$.
- (n) Is the model $\ln Y_i = \beta_1 + \beta_2 \left(\frac{1}{X_i}\right) + u_i$ a linear regression model? Why?
- (o) If $\hat{\beta}_{YX}$ and $\hat{\beta}_{XY}$ represent the estimated coefficients in the regression of Y on X and X on Y, respectively, show that

$$\hat{\beta}_{YX}\,\hat{\beta}_{XY}=r^2,$$

where r is the correlation coefficient between X and Y.

Group - B

Answer any three questions.

- 2. Suppose that you estimate the consumption function $Y_i = \alpha_1 + \alpha_2 X_i + U_{1i}$ and the savings function $Z_i = \beta_0 + \beta_1 X_i + U_{2i}$
 - (a) What is the relation between α_2 and β_2 (if any)?
 - (b) Can you compare the R^2 terms of the two models? Why or why not?

3+2

- 3. Given a sample of 50 observations and 4 explanatory variables, for each of the following cases what can you say about autocorrelation if:
 - (a) d = 1.05
 - (b) d = 1.40
 - (c) d = 2.50
 - (d) d = 3.97
 - (e) d = 2.00

Where d is the Durbin-Watson d statistics

[Corresponding to 5% level of significance, n = 50 and k = 5, $d_L = 1.335$ and $d_U = 1.771$].

1+1+1+1+1

- 4. What do you mean by multicollinearity? What are its sources? Why can not the regression coefficients be measured accurately when multicollinearity is less than perfect?

 1+2+2
- 5. To estimate the relationship between sales and wages of the employees of a firm three models are estimated as shown below:

wage =
$$\beta_1 + \beta_2$$
 sales + u
 $\log(\text{wage}) = \beta_3 + \beta_4$ sales + u
 $\log(\text{wage}) = \beta_5 + \beta_6 \log(\text{sales}) + u$

- (a) Explain how the interpretation of the values of the slope coefficients will vary in these models.
- (b) Does the interpretation change if wage is measured in thousand rupees and sales in lakh rupees in model 1?

 4+1
- 6. From a sample of 3000 employees the following relationship is estimated

$$\hat{Y}_i = \hat{\alpha} + \hat{\beta} X_i,$$

where Y_i is the wage (in thousand rupees) and X_i is the age (in years). The following informations are shown below:

$$\sum x_i y_i = 3050.24 \sum x_i^2 = 22356.23 \sum y_i^2 = 72320.22$$

$$\sum X_i = 82380.23 \sum Y_i = 29540.25 RSS = 75000.26$$
where $x_i = X_i - \overline{X}$ and $y_i = Y_i - \overline{Y}$

- (a) Use the above information to compute $\hat{\alpha}$ and $\hat{\beta}$.
- (b) Interpret the slope coefficient.
- (c) Estimate the standard error of the estimated regression coefficient.

2+1+2

Please Turn Over

Group - C

Answer any three questions.

- 7. (a) What is the difference between population regression function and sample regression function?
 - (b) Consider the following estimated regression equation:

$$\widehat{sleep} = 3638.25 - 0.148 \text{ totwrk} - 11.13 \text{ educ} + 2.20 \text{ age}$$

$$SE = (112.28) (0.017)$$

$$R^2 = 0.113; n = 706$$

where 'sleep' = total number of minutes slept per week;

'totwrk' = total number of minutes worked per week;

'educ' = the number of years of education

'age' = age in years

- (i) Why is the sign of coefficient of work negative? Interpret the coefficient. Is it significant?
- (ii) Discuss the sign and magnitude of the estimated coefficient on education.
- (iii) Test the null hypothesis that all the coefficients are simultaneously zero against the alternative hypothesis that they are not simultaneously zero.
- (iv) Is the coefficient of age significant?

[Given
$$F_{0.01,(3,702)} = 3.78$$
 and $t_{0.01,702} = 2.576$]

8. (a) From the data for 45 developed countries, the following regression results were obtained:

$$\widehat{Log C} = 4.30 - 1.34 \text{ Log } P + 0.17 \text{ Log } Y$$

SE = (0.09) (0.32) (0.20)

$$\bar{R}^2 = 0.27$$

where C = cigarette consumption (packs per year)

P = real price of cigarette per pack

Y = per capita real income

- (i) Discuss the sign and magnitude of coefficient on Log Y. What does this coefficient stand for?
- (ii) What is the elasticity of demand for cigarette with respect to price? Is it significant?
- (iii) How would you determine R^2 from the given \bar{R}^2 ? [Given $t_{0.01,42} = 2.704$]
- (b) Define coefficient of determination. What role does it play in econometric analysis?

(3+2+2)+(1+2)

- 9. (a) Write a short note on importance of dummy variable in econometric analysis.
 - (b) Consider the following model:

$$\hat{Y} = 46.67 + 26.25 \text{ D}_1 - 6.07 \log(X)$$

SE = (43.41) (5.59) (3.88)
 $R^2 = 0.237$; $n = 105$

where Y = number of hours of training per employee at firm level

X = number of employees

 D_1 is a dummy variable such that

 $D_1 = 1$ if the firm receives a job training grant,

- = 0 otherwise
- (i) Interpret the regression coefficient of the dummy variable in the above model. Is it statistically significant?
- (ii) How does the size of employment affect the number of hours of training per worker provided [Given $t_{0.01,102} = 2.638$] 5+(3+2) by the firm?
- 10. (a) Suppose you have increased the number of explanatory variables in a multiple linear regression model. What will be its impact on R^2 and adjusted R^2 ?
 - (b) In a regression model $Y = \alpha + \beta X + U$. Suppose that we multiply each X value by a constant 2. Examine whether it will change the residuals and the fitted values of Y.
- 11. (a) A regression of average daily earnings (E) measured in rupees on age (measured in years) using a random sample of workers yields

$$\hat{E} = 696.7 + 9.6 \text{ age}$$

 $R^2 = 0.023, RSS = 1542.2$

- (i) What are the units of RSS and R^2 ?
- (ii) What is the predicted earning of a 30 years old worker?
- (iii) What is the average increase in earning for one year increase in age?
- (b) Explain how R^2 and adjusted R^2 measure the goodness of fit of the regression. Do you think that in the regression analysis our objective will always be to obtain a high R^2 or adjusted R^2 ? (2+1+1)+(4+2)