B(6th Sm.)-Computer Sc.-H/CC-14/CBCS

2024

COMPUTER SCIENCE — HONOURS

Paper : CC-14

(Theory of Computation)

Full Marks : 50

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Answer question no. 1 and any four from the rest.

1. Answer any five questions :

2×5

Why is it necessary to minimize the number of states in a finite state machine?

Define a Non-deterministic Finite Automaton (NDFA).

VC) Define Instantaneous description (ID) of a Turing Machine.

Given $\sum = \{a, b\}$. Write a regular expression where no two a's come together. Explain briefly. (e) Give an example of an ambiguous grammar.

State Arden's Theorem.

(g) Define Type-0 and Type-1 grammars as classified by Chomsky.

What is the significance of Halting Problem in Turing Machine?

2. \mathcal{A} Define a Moore machine M₁.

- How is it different from a Mealy Machine?
- (c) Consider the Mealy machine described below. Construct a equivalent Moore machine.

Present State	Next State			
	Input $a = 0$		Input <i>a</i> = 1	
	State	Output	State	Output
q_1	q_3	0	q_2	0
q_2	q_1	1	q_4	0
q_3	q_2	1	q_{1}	1
q_4	q_4	1	q_3	0

2+2+6

Please Turn Over

B(6th Sm.)-Computer Sc.-H/CC-14/CBCS

State	a	Ь
<i>q</i> ₀	q_1, q_3	q_2, q_3
q_1	q_{1}	q_3
q_2	q_3	q_2
(q_3)		

(2)

Construct a DFA equivalent to an NDFA whose transition table is given below

Construct a Grammar which generates set of all palindromes over the alphabet $\{a, b\}$. 5+5

4. We Find a grammar G generating
$$L = \{a^i b^m c^m \mid m \ge 1, i \ge 0\}$$
.

- When is a grammar G said to be monotonic (or length increasing)?
- (c) Find the highest type number (in Chomsky classification) which can be applied to the following productions:

(i)
$$S \rightarrow aS \mid ab$$
, (ii) $S \rightarrow ASB \mid d, A \rightarrow aA$ $6+2+2$

- 5. (a) Give a formal recursive definition of regular expressions over $\sum_{i=1}^{n}$
 - (b) Prove that $(a^*ab + ba)^*a^* = (a + ab + ba)^*$

(use the relevant identities)

(c) Convert the following finite automata to a regular expression using Arden's theorem. Show all the steps. c

b. Give the regular expression for the strings belonging to the following languages : 2×5

(f) $L_1 = \{x \in \{a, b\}^* \mid x \text{ has no two consecutive } a's\}$

(ii) $L_2 = \{x \in \{a, b\}^* \mid x \text{ ends with } abb\}$

(iii) $L_3 = \{x \in \{a, b\}^* \mid x \text{ has a substring } bab \text{ somewhere}\}$

(iv) $L_4 = \{x \in \{a, b\}^* \mid \text{The length of } x \text{ is } 2 \mod 3\}$

(f) $L_5 = \{x \in \{a, b\}^* \mid \text{Number of } a\text{'s in } x \text{ are even}\}$

- (b) State the basic idea of a push-down automaton. Explain with the help of a suitable diagram, the working principle of a PDA. 5+5
- **5.** (a) Design a TM that recognizes all strings having an odd number of *a*'s. (b) Design a Turing Machine to recognize the language $L = \{1^n 2^n 3^n \mid n \ge 1\}$.

B(6th Sm.)-Computer Sc.-H/CC-14/CBCS

5 + 5