2024

COMPUTER SCIENCE — GENERAL

Paper: DSE-B-1, DSE-B-2 and DSE-B-3

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

DSE-B-1

(Embedded Systems)

Full Marks: 50

Answer question no. 1 and any four questions from the rest.

1.	Ans	wer any five questions:	2×5
	(a)	Explain the function of the IE (Interrupt Enable) register in MCS-51.	
	(b)	Name at least two Special Function Registers (SFR).	
	(c)	State the significance of PORT registers.	
	(d)	What are the different flags related to MCS-51?	
	(e)	What is the function of the stack pointer (SP) in MCS-51 and how is it used?	
	(f)	How does the MUL AB instruction function in MCS-51?	
	(g)	How can external interrupts be triggered in the MCS-51 microcontroller?	
	(h)	What is the significance of the XCH instruction in MCS-51?	
2.	(a)	Differentiate between Program and Data memory of MCS-51.	
	(b)	What are the main applications of microcontroller?	7+3
3.	(a)	What is the use of VHDL?	
	(b)	How does the use of subroutines improve code organization in MCS-51 programming?	5+5
4.	(a)	What are the different types of bit-oriented program jumps in MCS-51? Explain in brief with su example and diagram.	itable
	(b)	How does the ACALL instruction differ from LCALL in MCS-51?	5+5
5.	(a)	Draw the internal architecture of 8051 microcontroller and briefly explain each block.	
	(b)	What is the function of the PSW register?	8+2

B(6th Sm.)-Comp	outer ScG/DSE-B-1
DSE-B-2 &	DSE-B-3/CBCS

(2)

6.	(a)	What is the purpose of the MOVX instruction in MCS-51?	
		What does the ORL and ANL instruction do in the MCS-51 microcontroller?	6+
7.	(a) (b)	Explain stack operation in MCS-51 with proper illustrations. Write the functions of IE and SBUF.	5 .
8.	(a)	Highlight the main differences between Microcontroller and Microprocessor.	5+
	(-)	Differentiate between bit addressable and byte addressable memory in MCS-51.	5+4

DSE-B-2

(Object Oriented Programming)

Full Marks: 50

Answer question no. 1 and any four questions from the rest.

1. Answer any five questions:

2×5

- (a) Explain the term data abstraction with an example.
- (b) State differences between class and object.
- (c) What do you mean by implicit data type conversion?
- (d) What are the restrictions of static method?
- (e) What is the significance of 'this' operator?
- (f) Discuss the use of wrapper class.
- (g) Name any four in-built standard java packages.
- (h) How can textbox and button be created using AWT?
- 2. What is overloading? Explain constructor overloading with an example. Differentiate between overloading and overriding.
- 3. (a) What is inner class? Differentiate it with nested class with an example.
 - (b) How can function overriding be restricted?
 - (c) How can inheritance be restricted?

(2+4)+2+2

- 4. (a) Define package. Which package is imported by default in Java? How can packages be imported in Java?
 - (b) What is the difference between equals() and "= ="?
 - (c) Write a program in Java that inputs a string and print only the odd positioned characters in upper case.

Eg. string: Who are you?

output: WORYU

(1+1+2)+2+4

- 5. (a) How does Java handle exception?
 - (b) Show the uses of throws and give an example.
 - (c) How to create and handle own exception?

3+(2+2)+3

- 6. (a) What do you mean by default constructor? What is the use of class? Give an example.
- 7. (a) Explain the following functions with example:
 - (i) valueOf()
 - (ii) setLength()
 - (iii) drawRect()
 - (iv) isAlive().
 - (b) Name four methods which performs operations on strings in a Java String class. (2+2+2+2)+2
- 8. Write short notes on (any two):

5×2

- - (a) Java database connectivity
 - (b) Java package
 - (c) Garbage Collection in Java
 - (d) Java IO.

DSE-B-3

(Computational Mathematics)

Full Marks: 50

Answer question no. 1 and any four questions from the rest.

- 1. Answer any five questions:
 - (a) Define Hamiltonian circuit of a graph.
 - (b) What is a simple graph?
 - (c) What is a connected graph?
 - (d) Discuss the limitations of the Simpson's 1/3 rd rule for solving definite integrals.
 - (e) What is the condition of convergence of the Gauss-Seidel method for solving a set of linear equations?
 - (f) What is the rank of a coefficient matrix in a system of linear equations?
 - (g) Is there any limitations of the Newton-Raphson's method? Explain your answer.
 - (h) If $f(x) = 4 \cos x 6x$, find the relative percentage error in f(x) for x = 0, if error in x = 0.005.
- 2. (a) What is Euler graph? Show that if G is an Euler connected graph then every vertex of G are of even degree.
 - even degree. 5+5 (b) What is a tree? Show that a tree with n vertices has exactly (n-1) edges.
- 3. (a) Define planar graph. Give an example.
 - (b) When are two graphs said to be isomorphic? Discuss with a suitable example.
 - (c) Show that the number of vertices of odd degree in a graph is always even. 2+3+5
- 4. (a) Solve the following system of linear equations by Gauss-Jordan Elimination method:

$$2x + 3y - 4z = 1$$
$$x - 2y + 3z = 2$$
$$-4x + y - 2z = 3$$

Correct up to two decimal places.

(b) Define absolute error, relative error and percentage error.

7+3

 2×5

- 5. (a) Using the Bisection method, compute the real root of $x^3 3x^2 + 2x 2 = 0$ correct up to two decimal places.
 - (b) Prove that $\Delta \cdot \nabla = \Delta \nabla$, where $\Delta f(x) = f(x+h) f(x)$ and $\nabla f(x) = f(x) f(x-h)$.

Please Turn Over

6. Write down the composite expression for Simpson's 1/3 rd rule. Evaluate $\int_{1}^{2} \frac{dx}{\sqrt{1+x^2}}, \text{ by }_{1ak_{i_{n_g}}}$

8 intervals using this rule. Compute the error in this case.

8 intervals using this rate.

7. (a) Given the following table, find f(2.6) using Newton's backward interpolation polynomial $\frac{1}{1}$ technique.

(b) Discuss the geometrical interpolation of Newton-Raphson method with a diagram.

6+4

- 8. (a) Solve $x-2\sin x-3=0$ correct up to five significant figures by Newton-Raphson method.
 - (b) Solve the following system of linear equations by Gauss elimination method.

$$x - y + 2z = 4$$

$$-3x + 4y - z = 2$$

$$2x + 3y + 4z = 1$$

5+5