2023

COMPUTER SCIENCE — HONOURS

Paper : CC-1

(Digital Logic)

Full Marks: 50

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer question no. 1 and any four questions from the rest.

Answer any five questions :

2×5

- (a) Construct a XOR gate (2 input) using minimum number of two input NAND gates.
- (b) What is principle of duality?
- (6) What is S-R flip flop?
- (d) What is SOP? Give suitable example.
 - (e) Convert the BCD number 0111 1100 0011 to its decimal equivalent.
- What is negative edge triggerred clock pulse?
- (g) Simplify the boolean expression $x = A \cdot B \cdot C + A \cdot \overline{B} \left(\overline{A \cdot C} \right)$ and implement it using fundamental/basic logic gates.
- (h) Design OR gate using 2-input NAND gates.
- What is a 3-bit full adder? Draw the truth table of a full adder. Derive the boolean expression for sum output and carry output from the truth table. Draw the logical circuit diagram using basic logic gates.
 - Show that XOR gate can be used as control inverter. Give appropriate examples. (2+2+2+2)+2
- Draw the logic circuit diagram of master slave J-K flip flop using NAND gates and explain its operation and also draw the truth table.
 - State and prove De-Morgan's theorem with appropriate example.

7+3

- Simplify the logic expression $F = \sum_{m} (1,4,6,8,9)$ using K-map. Draw the truth table and implement the simplified expression using basic logic gates.
 - What is race-around problem? Give examples.

7 + 3

Z(1st Sm.)-Computer Science-H/CC-1/CBCS) (2)	
5. (a) Design a 3-bit full subtractor using two 4×1 multiplexers and other logic gates. Draw the tru(b) Draw the logical circuit diagram of a de-bouncer circuit using two input NAND gates.	ith table. 6+4
 (a) Implement a half adder using 4 to 1 multiplexer and other necessary logic gates. Explain th and draw the appropriate logic circuit diagram. 	e design
(b) Realize XOR logic using NAND logic gates.	6+4
7. (a) Construct a decade up 4-bit ripple asynchronous counter using J-K flip flop and explain its o with appropriate illustration.	peration
(b) What is even parity generator?	
8. Write short notes on (any two):	8+2
(a) TTL two input NAND gate	5×2
Universal shift register	

(c) Johnson Counter

(d) Seven Segment display.