2023

COMPUTER SCIENCE — HONOURS — PRACTICAL

Paper: CC-5P

(Computer Organization Lab)

Full Marks: 30

The figures in the margin indicate full marks.

Marks Distribution

Experiment total		:	20
Theory + Problem design	:	05	
Implementation	:	10	
Output	:	03	
Discussion/Conclusion	:	02	
Viva voce		· :	06
Lab notebook		:	04

SET - 2

Answer any one question.

1. Design a logical unit capable of performing the following operation:

Selec	tion	Function		
- S ₁	S ₀	Y		
0	0	ANDing		
0	1	ORing		
1	0	XORing		
1	1	Complement		

Comparison is to be made beween 2 sets of 2-bit numbers $(A_1 A_0 \text{ and } B_1 B_0)$. Show at least 1 set of output for each function.

	(2) Z(3rdSm.)-ComputerScH/Pr./CC-5P/Inst./CBCS/Set-2)
2.	Design a circuit capable of performing 4-bit addition and 2's complement subtraction (inputs need not be in BCD form and hence correction is not mandatory). Take at least 3 sets of data.
3.	Design a full adder using IC 74138, and verify the outputs using LED's, also record the output logic voltage levels.
4.	Construct a 4-bit synchronous counter, using JK or D flip-flops. Use de-bouncer circuit as manual clock.
5.	Design 2-bit bidirectional shift register. (control R/L). De-bouncer circuit to be used as manual clock. Take at least 3 sets of data.
6.	Convert Gray to Binary code using RAM IC 7489/74189. Take at least 4 sets of data.
7.	Construct a 2-bit universal shift register using D flip-flop (7474) and 4 to 1 multiplexer (74153) with other necessary logic gates. Use a de-bouncer circuit as manual clock.

8. Design a 16×8 memory module using necessary logic gates and RAM IC 7489/74189.

20