Z(3rd Sm.)-Computer Sc.-H/CC-6/CBCS

2023

COMPUTER SCIENCE — HONOURS

Paper : CC-6

(Computational Mathematics)

Full Marks : 50

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Answer question no. 1 and any four questions from the rest.

1. Answer any five questions :

- (a) Prove by mathematical induction that the proposition P : the sum of the first n odd numbers is n^2 .
- (b) If $y = 4x^6 5x$, find the percentage error in y at x = 1, if the error in x = 0.04.
- (When is a function said to be an invertible function?
- (d) What is the condition for convergence of Gauss-Jacobi iteration method in solving a set of linear equations?
- () Briefly state the Generalized Pigeonhole Principle.
- (f) When is a graph said to be a regular graph? Draw a regular graph of degree 4 having 4 vertices.
- (g) Find the coefficient of x^5y^8 in the expansion of $(x + y)^{13}$ by using Binomial theorem.
- Find the first five terms of the sequence defined by the following recurrence relation and initial conditions :

$$a_n = a_{n-1} + 3a_{n-2}, a_0 = 1, a_1 = 2$$

- .2. (c) Show that $x^4 + 9x^3 + 4x + 7$ is $O(x^4)$.
 - Define power set of a set S. What is the power set of the empty set? What is the power set of $\{\phi\}$?
 - (c) Justify the statement "Among any group of five (not necessarily consecutive) integers, there are two with the same remainder when divided by 4".
- 3. (a) How many bit strings of length 8 either starts with a 1 or ends with 10?
 - (b) If X is a random variable over a sample space S, E is the expected value and μ is the mean, prove that $var(X) = E(X^2) \mu^2$.
 - A person dealt 5 cards from an ordinary 52-card deck. Find the probability p that they are all spades. 4+4+2

Please Turn Over

2×5

Z(3rd Sm.)-Computer Sc.-H/CC-6/CBCS

(a) Prove that the number of *m*-combinations of a set with *n* elements, where *n* is a non-negative integer and *m* is an integer $0 \le m \le n$ is

$$C(m,n) = \frac{n!}{m!(n-m)!}$$

- Give the definition of a linear homogeneous recurrence relation of degree m and having constant coefficients.
- Solve the recurrence relation $a_n = 6a_{n-2} 5a_{n-1}$ with initial conditions $a_0 = 2$ and $a_1 = 10$. 4+2+4
- 5. (a) A committee of 5 Principals is to form from a group of 6 male Principals and 8 female Principals. If the selection is made randomly, find the probability that there are 3 female Principals and 2 male Principals.
 - (b) State the Bayes' Theorem on conditional probability.
 - (c) Use Newton's backward interpolation technique to compute f(22) for the following table :

x	0	5	10	15	20
f(x)	2.5	3.0	4.2	7.6	18.7

Write the formula used.

- 6. (a) Write an algorithm to find the roots of an equation using bisection method.
 - (b) Prove that in a simple connected graph with n vertices (n > 1), at least two vertices are of equal degrees.
 - (c) What is a minimum spanning tree?
- \mathcal{T} . (a) Prove that the sum of the degrees of the vertices of a graph G is equal to twice the number of edges in G.
 - (b) Given $\frac{dy}{dx} = \frac{y-x}{y+x}$ with initial condition y = 1 at x = 0. Find y for x = 0.1 by using Euler's method and

taking step size = 0.02. Write down the formula used.

8. (a) Evaluate $\int_{0}^{6} \frac{dx}{(1+x)^2}$, taking six equal intervals, correct to 3-decimal places. Show the formula used.

Write the algorithm for linear regression. Write down the formula.

5+5

4+2+4

5+3+2