2023

CHEMISTRY — MINOR

Paper: MN-1

Full Marks: 75

Candidates are required to give their answers in their own words as far as practicable.

প্রান্তলিখিত সংখ্যাগুলি পূর্ণমান নির্দেশক।

১, ২, ৩, ৪ প্রশ্নগুলি (বাধ্যতামূলক) এবং অবশিষ্ট থেকে *যে-কোনো চারটি* -র (প্রশ্ন ৫ থেকে ১০-এর মধ্যে) উত্তর লেখো।

১। *ষে-কোনো দশটি* প্রশ্নের উত্তর দাওঃ

5×20

- (ক) নাইট্রোজেন এবং অক্সিজেন-এর আয়নীভবন বিভব তুলনা করো।
- (খ) C_4H_3Cl অণুটির আণবিক সংকেতের দ্বি-বন্ধনতুল্য (double bond equivalent) (DBE) নির্ণয় করো।
- (গ) 'স্টেট ফাংশন' এবং 'পাথ ফাংশন' বলতে কী বোঝো?
- (ঘ) −10°C তাপমাত্রায় রাখা (KI + TlI₃) মিশ্রণটিকে ঘরের তাপমাত্রায় নিয়ে গেলে KTlI₄ প্রস্তুত হয়। বিক্রিয়ার আগে ও পরে Tl–এর জারণস্তর নির্ণয় করো।
- (৬) নিম্নের অ্যালকিনদ্বয়ের মধ্যে ব্যাখ্যাসহ স্থিতিশীলতা তুলনা করো ঃ 1-বিউটিন এবং 2-বিউটিন।
- (ъ) শূন্যক্রম বিক্রিয়ার দৃটি বৈশিষ্ট্য উল্লেখ করো।
- (ছ) ফ্রোরিন এবং ক্লোরিনের ইলেকট্রন আসক্তি তুলনা করো।
- (জ) নিম্নের অণু দুটির IUPAC নামকরণ করো।

(図)
$$H_2C = CH - CH_2 - C \equiv C - H$$

(আ)
$$H_3C - CH = CH - CH - CH_3$$
 OH

- (ঝ) ভর-নিরপেক্ষ ও ভর-নির্ভরশীল ধর্ম শনাক্ত করো ঃ আপেক্ষিক তাপ, তাপ ধারকত্ব (Heat capacity), ঘনত্ব ও আয়তন।
- (এঃ) de Broglie প্রকল্পটি (Hypothesis) বিবৃত করো এবং এর গাণিতিক রূপটি লেখো।
- (ট) n-পেন্টেন এবং 2-মিথাইলবিউটেন যৌগ দুটির ব্যাখ্যাসহ স্ফুটনাঙ্ক তুলনা করো।
- (ঠ) A ও B-এর বিক্রিয়ায় A-এর সাপেক্ষে ক্রম হল 1 এবং B-এর সাপেক্ষে ক্রম হল 2। যদি A ও B-এর গাড়ত্ব বিগুণ করা হয় তাহলে বিক্রিয়ার হার কতগুণ বাড়বে?

- ২। সংক্ষিপ্ত টীকা লেখোঃ
 - (ক) নিষ্ক্রিয় জোড় প্রভাব (Inert pair effect) (নিম্নলিখিত বিষয়গুলি অনুসরণ করে)
 - (অ) সংজ্ঞা।
 - (আ) উদাহরণ (*যে-কোনো দুটি*)।
 - (ই) ব্যবহারিক প্রয়োগ (*যে-কোনো দুটি*)।

3+2+2

অথবা

- (খ) Slater-এর সূত্রগুলি বিবৃত করো। (নিম্নলিখিত বিষয়গুলি অনুসরণ করে)
 - (অ) s এবং p ইলেকট্রনগুলির জন্য।
 - (আ) d ইলেকট্রনের জন্য।

٤٥/١+٤٥/١

- ৩। সংক্ষিপ্ত টীকা লেখোঃ
 - (ক) 'রেজোনেন্স' এবং 'রেজোনেন্স শক্তি' (নিম্নলিখিত বিষয়গুলি অনুসরণ করে)
 - (অ) 'রেজোনেস'-এর সংজ্ঞা।
 - (আ) জৈব যৌগের ক্ষেত্রের রেজোনেন্সের উদাহরণ (*অন্তত দুটি*)।
 - (ই) 'রেজোনেন্স শক্তি'-এর সংজ্<mark>ঞা।</mark>
 - (ঈ) 'রেজোনেন্স শক্তি'-র তাৎপর্য।

2+2+2+2

অথবা

- (খ) হাইপারকনজুগেশন (নিম্নলিখিত বিষয়গুলি অনুসরণ করে)
 - (অ) হাইপারকনজুগেশন-এর সংজ্ঞা।
 - (আ) হাইপারকনজুগেশন-এর উদাহরণ (*অন্তত দুটি*)।
 - (ই) হাইপারকনজুগেশন সংক্রান্ত জৈবযৌগের স্থায়িত্ব।

>+>+2

8। (ক) আদর্শ গ্যাসের রুদ্ধতাপীয় পরাবর্ত পরিবর্তনের জন্য প্রমাণ করো PV ^γ = ধ্রুবক, যেখানে প্রতিটি চিহ্ন প্রচলিত অর্থ বহন করে।

অথবা

- (খ) সংক্ষিপ্ত টীকা লেখো ঃ আরহেনিয়াস সমীকরণ (Arrhenius Equation) (নিম্নলিখিত বিষয়গুলি অনুসরণ করে)
 - (অ) Arrhenius সমীকরণ।
 - (আ) Arrhenius সমীকরণের সাহায্যে অ্যাকটিভেশন শক্তি (activation energy)-এর পরীক্ষালব্ধ মান নির্ণয়।

- ৫। (ক) 'রেডিয়াল ডিস্ট্রিবিউশন ফাংশন' (Radial Distribution Function) বলতে কী বোঝো? হাইড্রোজেন প্রমাণুর 1s, 2s ও 2p কক্ষকের জন্য রেডিয়াল ডিস্ট্রিবিউশন ফাংশনগুলি এঁকে দেখাও।
 - (খ) নিম্নলিখিত আয়নগুলিকে অ্যারোম্যাটিক অথবা অ্যান্টি-অ্যারোম্যাটিক ব্যাখ্যাসহ চিহ্নিত করো।

- (গ) বিক্রিয়া তাপের উপর উষ্ণতার প্রভাব সম্পর্কিত কারশফ্ সমীকরণটি (Kirchhoff Equation) প্রতিষ্ঠা করো। ৪+(১^১/২+১^১/২)+৩
- ৬। (ক) LCAO নীতি অনুযায়ী 1,3-বিউটাডাইন (1,3-butadiene) অণুটির আণবিক কক্ষকগুলি এঁকে দেখাও। আণবিক কক্ষকগুলির ground state-এ HOMO এবং LUMO নির্ণয় করো ও তাদের ইলেকট্রন বিন্যাস দেখাও।
 - (খ) একটি প্রথমক্রম বিক্রিয়ার হার ধ্রুবকের মান 3.5×10^{-3} মিনিট $^{-1}$ । বিক্রিয়াটির অর্ধায়ুকাল ($t_{1/2}$) নির্ণয় করো। এই বিক্রিয়াটিতে বিক্রিয়কের প্রারম্ভিক গাঢ়ত্ব দ্বিশুণ করলে অর্ধায়ুকাল ($t_{1/2}$) কীরূপ পরিবর্তিত হবে?
 - (গ) হাইড্রোজেন পরমাণুর Schrödinger সমীকরণটি লেখো। কক্ষক (atomic orbital) কী? হাইড্রোজেন পরমাণুর d₂2 কক্ষকের নকশাচিত্রটি এঁকে দেখাও। (২+১+১)+৩+(১+১+১)
- ৭। (ক) 1 মোল আদর্শ গ্যাসের জন্য তাপগতিবিদ্যার সাহায্যে $C_{
 m P}$ এবং $C_{
 m V}$ -এর মধ্যে সম্পর্ক স্থাপন করো।
 - (খ) নিম্নলিখিত মানগুলির সাহায্যে পাউলিং (Pauling Scale) স্কেল অনুযায়ী ফ্লোরিনের তড়িৎ ঋণাত্মকতা (electronegativity) নির্ণয় করোঃ

 $E_{H-H} = 104.4 \text{ kcal mol}^{-1}$ $E_{F-F} = 36.6 \text{ kcal mol}^{-1}$ $E_{H-F} = 134.6 \text{ kcal mol}^{-1}$ $\chi_H = 2.1$

(গ) নিম্নলিখিত যৌগগুলির ব্যাখ্যাসহ দ্বিমেরুশ্রামক তুলনা করোঃ

৮। (ক) হাইজেনবার্গের অনিশ্চয়তা নীতি বিবৃত ও ব্যাখ্যা করো। $10 \ ext{Å}$ মাত্রার সরলরৈখিক স্থানে আবদ্ধ ইলেকট্রনের বেগের অনিশ্চয়তা নির্ণয় করো। [দেওয়া আছে ঃ ইলেকট্রনের ভর = $9.109 imes 10^{-31} \ ext{kg}$]

- (খ) 3-ক্লোরোবিউটান-2-অল (3-chlorobutan-2-ol) অণুটির একটি ফিশার অভিক্ষেপণ (Fischer projection) ফর্মুলা লেখো এবং এটিকে নিউম্যান (Newman) ও সহর্স (sawhorse) ফর্মুলাতে রূপান্তর করো।
- (গ) 1 মোল একটি আদর্শ গ্যাসকে 27°C উষ্ণতায় সমতাপীয় পরাবর্ত পদ্ধতিতে 10 লিটার থেকে 100 লিটারে সম্প্রসারণ করা হল। সেক্ষেত্রে q, w এবং ΔU-এর মান গণনা করো। (২+২)+(১+১+১)+৩
- ৯। (ক) 'ইনডাকটিভ এফেক্ট' (Inductive effect) বলতে কী বোঝো? 'ইনডাকটিভ এফেক্ট'-এর সাহায্যে অ্যাসেটিক অ্যাসিড, ফরমিক অ্যাসিড, ক্লোরোঅ্যাসেটিক অ্যাসিড এবং ডাইক্লোরোঅ্যাসেটিক অ্যাসিডের আল্লিক ধর্মের ব্যাখ্যাসহ তুলনা করো।
 - (খ) নিম্নলিখিত উভমুখী বিক্রিয়াটি বিবেচনা করো যেটি উভয়দিকেই এক ক্রম।

$$A \xrightarrow{k_f} B$$
; যেখানে $\frac{k_f}{k_b} = 2$

সময়ের অপেক্ষকরূপে A এবং B-এর গাঢ়ত্ব নির্দেশক লেখচিত্রগুলি আঁকো।

- (গ) তড়িৎ ঋণাত্মকতা (electronegativity) এবং ইলেকট্রন আসক্তি (electron affinity)-র মধ্যে পার্থক্য নিরূপণ করো। (১+৩)+৩+৩
- ১০। (ক) নিম্নলিখিত বিক্রিয়ার ক্ষেত্রে স্টেডি স্টেট অনুমান করে P-এর উৎপাদনের হারের সমীকরণ (rate law)-টি প্রতিষ্ঠা করো।

$$A + B \xrightarrow{k_1} C \xrightarrow{k_3} P$$

এখানে C হল মধ্যবর্তী যৌগ (Intermediate) এবং $k_1,\,k_2,\,k_3$ হল উল্লিখিত বিক্রিয়াটির ধাপগুলির হার ধ্রুবক।

- (খ) 'আয়নীয় শক্তি' (Ionization energy)-র সংজ্ঞা লেখো। পটাশিয়াম এবং কপারের প্রথম ও দ্বিতীয় আয়নীয় শক্তি-র তুলনা করো।
- ্গে) একটি করে উদাহরণসহ এনানশিওমার (enantiomer) এবং ডায়াস্টিরিওআইসোমার (Diastereoisomer)-এর সংজ্ঞা দাও। ৪+৩+(১^১/২+১^১/২)

[English Version]

The figures in the margin indicate full marks.

Answer question nos. 1, 2, 3, 4 (compulsory) and any four from the rest (question nos. 5 to 10).

1. Answer any ten questions:

2×10

- (a) Compare ionization potential of nitrogen and oxygen.
- (b) Calculate the double bond equivalent (DBE) of the molecule having molecular formula C₄H₃Cl.
- (c) What are state function and path function?

- (d) KI + Tll₃ mixture at -10°C is allowed to attain room temperature to form KTll₄. Determine the oxidation state of Tl before and after the reaction.
- (e) Compare the stability of the following alkenes with explanation:

1-Butene and 2-Butene.

- (f) State two characteristics of zero order reaction.
- (g) Compare the electron affinity of fluorine and chlorine.
- (h) Write the IUPAC nomenclature of the following molecules:

(i)
$$H_2C = CH - CH_2 - C \equiv C - H$$

(ii)
$$H_3C - CH = CH - CH - CH_3$$

OH

(i) Identify as an intensive or extensive variable from the following:

Specific heat, heat capacity, density and volume.

- (j) State de Broglie Hypothesis and write its mathematical form.
- (k) Compare the boiling points of *n*-pentane and 2-methylbutane with explanation.
- (l) For a reaction between A and B, the order with respect to A is 1 and the order with respect to B is 2. If the concentrations of both A and B are doubled, then in what factor the rate will increase?

2. Write short note on:

- (a) Inert pair effect using the following points:
 - (i) Definition.
 - (ii) Examples (any two).
 - (iii) Applications (any two).

1+2+2

Or

- (b) Slater's rules using the following points:
 - (i) For s and p electrons.
 - (ii) For d electrons.

21/2+21/2

3. Write short notes on:

- (a) 'Resonance' and 'Resonance energy' using the following points:
 - (i) Definition of resonance.
 - (ii) Examples of resonance in organic molecules (at least two).
 - (iii) Definition of resonance energy.
 - (iv) Significance of resonance energy.

1+2+1+1

Or

- (b) Hyperconjugation using the following points:
 - (i) Definition of hyperconjugation.
 - (ii) Examples of hyperconjugation (at least two).
 - (iii) Hyperconjugation related to the stability of the molecule.

1+2+2

4. (a) Prove that for an adiabatic reversible process involving an ideal gas PV $^{\gamma}$ = constant, where the terms have their usual meanings.

Or

- (b) Write a short note on Arrhenius equation using the following points:
 - (i) Arrhenius equation.
 - (ii) Experimental determination of activation energy from Arrhenius equation.

2+3

- 5. (a) What is radial distribution function? Draw this function for the 1s, 2s and 2p orbitals in a hydrogen atom.
 - (b) Classify the following ions as aromatic or antiaromatic with explanation.

(c) Derive Kirchhoff's equation showing the variation of heat of reaction with temperature.

 $4+(1\frac{1}{2}+1\frac{1}{2})+3$

- 6. (a) Using LCAO principle, draw the molecular orbitals of 1, 3-butadiene mentioning HOMO and LUMO in the ground state, along with electronic arrangement.
 - (b) The rate constant of a first order reaction is 3.5×10^{-3} min⁻¹. Calculate the $t_{1/2}$. How does the $t_{1/2}$ of the reaction change if the initial concentration of the reactant be doubled?
 - (c) Write the Schrödinger equation for hydrogen atom. What is an atomic orbital? Draw schematically d_{z^2} atomic orbital. (2+1+1)+3+(1+1+1)
- 7. (a) Establish the relationship between C_p and C_V thermodynamically for 1 mole of an ideal gas.
 - (b) Calculate the electronegativity of fluorine atom from the following data using Pauling's scale.

$$E_{H-H} = 104.4 \text{ kcal mol}^{-1}$$

 $E_{F-F} = 36.6 \text{ kcal mol}^{-1}$
 $E_{H-F} = 134.6 \text{ kcal mol}^{-1}$
 $\chi_H = 2.1$.

(c) Compare the dipole moments of the following molecules with explanation:

(ii) CH₃Cl and CH₃F.

 $4+3+[(\frac{1}{2}+1)+(\frac{1}{2}+1)]$

- 8. (a) State and explain the Heisenberg Uncertainty Principle. Calculate the uncertainty in the speed of the electron confined in a space of linear dimension of 10 Å. [Given: mass of an electron = 9.109×10⁻³¹ kg]
 - (b) Draw any one Fischer projection formula of 3-chlorobutan-2-ol and convert it to its Newman and sawhorse projection formula.
 - (c) One mole of an ideal gas expands from 10 litre to 100 litre at 27°C isothermally and reversibly. Calculate q, w and ΔU for the process. (2+2)+(1+1+1)+3
- 9. (a) What do you mean by inductive effect? Compare the acidity of acetic acid, formic acid, chloroacetic acid and dichloroacetic acid in the light of inductive effect with explanation.
 - (b) Consider the following reversible reaction, first order in both the directions.

$$A \xrightarrow{k_f} B$$
; where $\frac{k_f}{k_b} = 2$

Plot curves that give the concentration of A and B as functions of time.

(c) Differentiate between electronegativity and electron affinity.

(1+3)+3+3

10. (a) Using the Steady state approximation, determine the rate law for the production of P.

$$A + B \xrightarrow{k_1} C \xrightarrow{k_3} P$$
,

where C is the intermediate and $k_1,\,k_2,\,k_3$ are rate constants.

- (b) Define ionization energy. Compare the first and second ionization energy between potassium and copper.
- (c) Define enantiomer and diastereoisomer with one example for each.

4+3+(11/2+11/2)

2023

CHEMISTRY — MDC

Paper: CC-1

(Fundamentals of Chemistry - 1)

Full Marks: 75

Candidates are required to give their answers in their own words as far as practicable.

প্রান্তলিখিত সংখ্যাগুলি পূর্ণমান নির্দেশক।

১, ২, ৩ ও ৪ নং প্রশ্নগুলি *বাধ্যতামূলক* এবং ৫ থেকে ১০ নং প্রশ্নগুলির মধ্যে *যে-কোনো চারটি-*র উত্তর দাও।

১। *ষে-কোনো দশটি* প্রশ্নের উত্তর দাও ঃ

2x50

- ক) পরমাণুর কক্ষ ও কক্ষকের মধ্যে দুটি পার্থক্য লেখো।
- (খ) মেসোটারটারিক অ্যাসিডের ফিসার ও সহর্স (sawhorse) অভিক্ষেপ সংকেত লেখো।
- (গ) বদ্ধতম্ভ্র ও বিচ্ছিন্নতন্ত্র বলতে কী বোঝো?
- (ঘ) আয়নীভবন শক্তির সংজ্ঞা লেখো। এর একক উল্লেখ করো।
- (৬) ক্লোরোফর্ম (chloroform) এবং ডাইক্লোরোমিথেন (dichloromethane) অণু দুটির মধ্যে কোনটির দ্বিমেরু ভ্রামকের মান বেশি এবং কেন ?
- (চ) নিম্নলিখিত ধর্মগুলির প্রত্যেকটি সংকীর্ণ অথবা পরিমাণগত এইভাবে চিহ্নিত করোঃ
 - (অ) চাপ.
- (আ) আয়তন,
- (ই) তাপমাত্রা,
- (ঈ) তাপগ্রাহীতা।
- (ছ) \mathbf{K}^{\oplus} এবং \mathbf{Cl}^{\ominus} আয়ন দুটিতে সমসংখ্যক ইলেকট্রন বর্তমান। এদের ব্যাসার্যগুলি তুলনা করো।
- জে) 'কনফরমেশন' ও 'কনফিগারেশন' (conformation and configuration)-এর মধ্যে পার্থক্য নিরূপণ করো।
- (ঝ) A, B এবং C এই তিনটি পদার্থ ক্রমান্বয়ী প্রথম ক্রম বিক্রিয়ায় অংশগ্রহণ করে—

 $A \xrightarrow{k_1} B \xrightarrow{k_2} C$

A, B এবং C-এর গাঢ়ত্ব বনাম সময় লেখচিত্রগুলি অঙ্কন করো।

- (এঃ) হাইজেনবার্গের অনিশ্চয়তা নীতিটি বিবৃত করো এবং এর একটি যথার্থতা (implication) বর্ণনা করো।
- (ট) "অর্থোনাইট্রোফেনল (ortho-nitrophenol) বাষ্পপাতিত হয় কিন্তু প্যারানাইট্রোফেনল (para-nitrophenol) হয় না" — ব্যাখ্যা করো।
- (ঠ) একটি শূন্যক্রম বিক্রিয়ার অর্ধায়ৢ কীভাবে প্রারম্ভিক গাঢ়ত্বের উপর নির্ভর করে?

Please Turn Over

(2)

- ২। সংক্ষিপ্ত টীকা লেখোঃ
 - (ক) ডি ব্রগলি প্রকল্প (de Broglie hypothesis)।

অখনা

- (খ) নিঃসঙ্গ ইলেকট্রন জোড়ের প্রভাব।
- ৩। সংক্ষিপ্ত টীকা লেখো:
 - (ক) অ্যারোমেটিসিটি (aromaticity) সংক্রান্ত হুকেলের সূত্রগুলি (Hückel's rules)।

অথবা.

- (খ) এনানশিওমার (enantiomer) এবং ডায়াস্টিরিওআইসোমার (diastereoisomer)।
- 8। সংক্ষিপ্ত ঢীকা লেখো:
 - ক) সমান্তরাল বিক্রিয়া (কেবলমাত্র প্রথম ক্রমের জন্য)।

অথবা,

- (খ) 'পথনির্ভর অপেক্ষক' (path function) এবং 'অবস্থা নির্ভর অপেক্ষক' (state function)।
- ৫। (ক) "Spin multiplicity" সংক্রান্ত হুন্ডের সূত্রটি লেখো। এর সাহায্যে নাইট্রোজেন পরমাণুর সর্বাপেক্ষা সুস্থিত ইলেকট্রন সজ্জাটি বের করো।
 - (খ) ফরমিক অ্যাসিড এবং অ্যাসেটিক অ্যাসিডের মধ্যে কোনটি বেশি শক্তিশালী অ্যাসিড এবং কেন?
 - (গ) দেখাও যে একটি আদর্শ গ্যাসের ক্ষেত্রে সমোষ্ণ ও পরাবর্ত প্রসারণের কাজের পরিমাণ সমোষ্ণ ও অপরাবর্ত প্রসারণের কাজের পরিমাণ অপেক্ষা বেশি।
- ৬। (ক) নিম্নলিখিত যৌগগুলিকে ফিসার অভিক্ষেপ ফর্মুলাগুলি (Fischer projection formula) থেকে নিউম্যান অভিক্ষেপ ফর্মুলাতে (Newman projection formula) পরিবর্তন করোঃ

- (খ) কোনো রাসায়নিক বিক্রিয়ায় 273 K এবং 303 K তাপমাত্রায় বেগ ধ্রুবক যথাক্রমে $2.45 \times 10^{-5}~{\rm sec^{-1}}$ এবং $16.2 \times 10^{-4}~{\rm sec^{-1}}$ । বিক্রিয়াটির সক্রিয় শক্তি (activation energy) গণনা করো।
- (গ) ইলেকট্রন আসক্তি এবং তড়িৎ ঋণাত্মকতার সংজ্ঞা লেখো। এদের মধ্যে দুটি পার্থক্য লেখো।

8+9+9

- ৭। $\,$ (ক) তাপগতিবিদ্যার সাহায্যে প্রমাণ করো যে এক মোল আদর্শ গ্যাসের ক্ষেত্রে ${
 m C_P-C_V}={
 m R\,I}$
 - (খ) হাইড্রোজেন পরমাণুর ক্ষেত্রে 1s, 2s এবং 2p কক্ষকগুলির radial distribution লেখচিত্রগুলি অঙ্কন করো।
 - (গ) নিম্নলিখিত যৌগগুলির IUPAC নামকরণ করোঃ

(SI)
$$H_3C - CH - CH - CH_2 - CH_3$$

$$\begin{vmatrix} & & | \\ & Br & OH \end{vmatrix}$$

8+0+0

- ৮। (ক) স্নেটারের সূত্রগুলি (Slater's rules) বর্ণনা করো। সূত্রগুলির সাহায্যে manganese (Mn) পরমাণুর একটি যোজ্যতা ইলেকট্রনের (valence electron) কার্যকরী নিউক্লীয় আধান (effective nuclear charge) বের করো। (z = 25)
 - (খ) 2, 6, N, N– টেট্রামিথাইল অ্যানিলিন, N, N– ডাইমিথাইল অ্যানিলিন অপেক্ষা বেশি ক্ষারধর্মী (basic)।— ব্যাখ্যা করো।
 - (গ) তাপগতিবিদ্যার প্রথম সূত্রটি বিবৃত করো এবং এর গাণিতিক রূপটি লেখো।

0+**0**+8

৯। (ক) নিম্নলিখিত যৌগগুলিকে অ্যারোমেটিক, অ্যান্টিঅ্যারোমেটিক অথবা নন-অ্যারোমেটিক হিসাবে বর্ণনা করো (ব্যাখ্যা নিষ্প্রয়োজন)ঃ

- (খ) কোনো বিক্রিয়ার ক্রম এবং আণবিকতার মধ্যে যে-কোনো তিনটি পার্থক্য লেখো।
- (গ) Mulliken scale-এর সাহায্যে ক্লোরিনের (chlorine)-এর তড়িৎ ঋণাত্মকতা নির্ণয় করো।

[দেওয়া আছে ঃ ক্লোরিনের ইলেকট্রন আসক্তি = 4.0 eV/atom, ক্লোরিনের আয়নীয় বিভব = 13.0 eV/atom] ৪+৩+৩

- ১০। (ক) একটি রুদ্ধতাপীয় পরাবর্ত প্রক্রিয়ায় আদর্শ গ্যাসের ক্ষেত্রে দেখাও যে ${
 m TV}^{\gamma-1}={
 m Constant}$ (যেখানে $\gamma={C_{
 m P}\over C_{
 m V}}$)।
 - (খ) নিম্নলিখিত জোড়গুলির মধ্যে আয়নীভবন শক্তির তুলনা করোঃ

(অ) N এবং O; (আ) N এবং N।

(গ) নিম্নলিখিত যৌগটির π-orbital চিত্র অঙ্কন করো। এই সঙ্গে প্রতিটি কার্বন (carbon) প্রমাণুর সংক্রায়ণ উল্লেখ করো। H_3C — $C \equiv C$ — CH_3

Please Turn Over

[English Version]

The figures in the margin indicate full marks.

Question numbers 1, 2, 3 & 4 are compulsory and answer any four from question numbers 5 to 10.

1.	Ans	wer <i>any ten</i> questions: 2×10
	(a)	State two differences between orbit and orbital of an atom.
	(b)	Draw the Fischer and the sawhorse formulae for meso-tartaric acid.
	(c)	What do you mean by closed system and isolated system?
	(d)	Define ionization energy. Write its unit.
	(e)	Which molecule has higher dipole moment and why?
		(i) Chloroform and (ii) Dichloromethane.
	(f)	Classify each of the following properties as intensive or extensive:
		(i) Pressure, (ii) Volume, (iii) Temperature, (iv) Heat capacity.
	(g)	K [⊕] and Cl [⊖] ions are isoelectronic. Compare their radii.
	(h)	Distinguish between conformation and configuration.
	(i)	Draw concentration versus time curves for the three species A , B , C in the first order consecutive reactions as follows:
		$\mathbf{A} \xrightarrow{k_1} \mathbf{B} \xrightarrow{k_2} \mathbf{C}.$
	(j)	State Heisenberg's Uncertainty principle and write one of its implications.
	(k)	o-nitrophenol is steam volatile but p-nitrophenol is not.— Explain.
	(1)	How is the half-life period of a zero order reaction related to the initial concentration of the reactant?
2.	Write	e a short note on :
	(a)	de Broglie hypothesis.
		Or,
	(b)	Inert pair effect.
3.	Write	e a short note on:
	(a)	Hückel's rules for aromaticity.
		Or,
	(b)	Enantiomer and diastereoisomer.

- 4. Write a short note on:
 - (a) Parallel reactions (first order only).

5

Or,

(b) Path function and state function.

5

- 5. (a) Write Hund's rule of spin multiplicity, and arrive at the most stable electronic arrangement of nitrogen atom.
 - (b) Between formic acid and acetic acid, which one is stronger acid and why?
 - (c) Show that isothermal reversible work of expansion involving an ideal gas is greater than isothermal irreversible work of expansion.

 4+3+3
- 6. (a) Convert the following Fischer projection formulae into Newman projection formulae:

(i)
$$CH_3$$
 (ii) CH_3 $H \longrightarrow OH$ $H \longrightarrow OH$ CH_3 CH_3

- (b) Rate constants of a chemical reaction at 273 K and 303 K are 2.45×10^{-5} sec⁻¹ and 16.2×10^{-4} sec⁻¹ respectively. Calculate the energy of activation.
- (c) Define electron affinity and electronegativity. Write down two differences between them.

4+3+3

- 7. (a) Derive thermodynamically $C_P C_V = R$ for one mole of an ideal gas.
 - (b) Draw the radial distribution curves for 1s, 2s and 2p orbitals for Hydrogen atom.
 - (c) Give the IUPAC names of the following compounds:

(i)
$$H_3C$$
 — CH — CH — CH_2 — CH_3 | | Br OH

(ii)
$$H_3C - CH = CH - C - H$$

O

O

O

|

(iii) $H_3C - CH = CH - C - H$

O

O

|

(iii) $HO - C - CH_2 - C - OH$

4+3+3

- 8. (a) State Slater's rules and applying these, find the effective nuclear charge of one valence electron in manganese (Mn) atom. (z = 25)
 - (b) 2, 6, N, N- Tetramethylaniline is a stronger base than N, N- dimethylaniline Explain.
 - (c) State the first law of thermodynamics and write its mathematical form.

4+3+3

Please Turn Over

Z(1st Sm.)-Chemistry-MDC/CC-1/CCF

(6)

9. (a) State whether the following compounds are aromatic, antiaromatic or non-aromatic (no explanation needed):

- (b) Write any three differences between order and molecularity of a reaction.
- (c) Calculate the electronegativity of chlorine in Mulliken scale.

 [Given: electron affinity of chlorine = 4.0 eV/atom, ionization potential of chlorine = 13.0 eV/atom]

 4+3+3
- 10. (a) Show that for an adiabatic reversible process involving an ideal gas $TV^{\gamma-1} = Constant$ (where $\gamma = \frac{C_P}{C_V}$).
 - (b) Compare the ionization energy in the following pairs:
 - (i) N and O ; (ii) N and $\stackrel{\oplus}{N}$
 - (c) Draw the π -orbital diagram of the following molecule stating hybridization of each carbon atom. $H_3C-C \equiv C-CH_3$.